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1. Introduction

In this paper we study one and two dimensional Euclidean SU(N) Yang-Mills theories

compactified on a circle and on a torus, respectively. This is relevant in particular for

studying these theories at finite temperature. In the ’t Hooft large N limit, we determine

the phase diagrams of these theories as a function of masses (of adjoint matter fields),

coupling constants and compactification parameters. The systems we study exhibit rich

dynamics; in particular, they undergo sharp large N phase transitions upon varying pa-

rameters. These phase transitions are associated with the spontaneous breakdown of the

ZN symmetry W → e
2πi
N W , where W is the holonomy along a non-contractible cycle of

the compactification manifold.

Our analysis employs different techniques in different regimes of parameter space.

When all matter fields are very massive compared to the scale set by the gauge coupling

(more precisely, when m4−d À λ, where m is the mass scale of the matter fields, d is the

dimension of space-time and λ ≡ g2
Y MN is the ’t Hooft coupling), the gauge theories we

study are weakly coupled1, and may reliably be analyzed in perturbation theory. Already in

this analytically tractable regime our systems undergo sharp phase transitions and display

a rich phase structure. Outside this perturbative regime, the phase diagrams we study can

be constrained by the requirement that they reproduce well known results in special limits.

The strong coupling behavior of maximally supersymmetric Yang-Mills theories may be

analyzed using generalizations of the AdS/CFT correspondence. Finally, it is sometimes

practical to employ Monte Carlo simulations to supplement the information from our other

techniques. Employing all these methods, we are able to present a reasonably complete

picture of the phase diagram of the systems we study.

The investigations reported in this paper are similar in spirit to the recent study of

Yang-Mills theory on Sp×S1 [1, 2]. It may be recalled that the phase transitions discovered

in [1, 2] may be thought of as a weak coupling continuation of the gravitational Hawking-

Page transition in AdS5×S5. At least some of the phase transitions we study in this paper

also have gravitational analogues. For example, as we have already reported in the letter [3]

(building on the work of [4 – 6]), the phase transition in maximally supersymmetric Yang-

Mills theory on T 2 is holographically dual to a Gregory-Laflamme black hole/black string

phase transition in type II string theory. See section 7 for other examples.

1Recall that the massless gauge field has no dynamical degrees of freedom.
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The structure of this paper is as follows. In section 2, we discuss various general prop-

erties of low dimensional gauge theories on tori, and in particular the order parameters that

distinguish the various phases that appear. In section 3, we review the behavior of Yang-

Mills theory dimensionally reduced to 0 dimensions; this is relevant to the small volume

limit of the higher dimensional cases. In section 4, we use analytic and numerical tech-

niques to map out the phase diagram of pure p+1-dimensional gauge theory dimensionally

reduced to 0+1 dimensions, and its generalizations with masses for the adjoint scalars.

In section 5, we study the thermodynamics of 1+1 dimensional Yang-Mills theory with

massive or massless adjoint scalars on a spatial circle by studying the partition function

of Euclidean two dimensional Yang-Mills theory on T 2. In the case where the scalars are

very massive, we obtain a fairly complete picture of the rather rich phase structure through

analytic analysis, leading to the phase diagrams in figures 14 and 15. In sections 6 and 7,

we repeat the analysis of sections 4 and 5 for the maximally supersymmetric Yang-Mills

theories in 0 + 1 and 1 + 1 dimensions, respectively. For these theories, knowledge of the

dual gravitational theories provides additional information about the strong coupling be-

havior of the gauge theory. We find that the supersymmetric theories show rather different

qualitative behavior from the non-supersymmetric theories; for the two dimensional case

this behavior is summarized in the phase diagrams of figures 18 and 19.

2. Low dimensional Yang-Mills theory on tori: generalities

Massless vector fields have no propagating degrees of freedom in one and two dimensions.

As a consequence, pure Yang-Mills theory in these dimensions is exactly solvable, and

exhibits relatively tame dynamics. However, the same theory displays rich dynamical

behavior when coupled to matter fields. In this paper we will study large N SU(N) Yang-

Mills theories coupled to matter fields in the adjoint representation. We begin in this

section with an overview of the properties of these theories.

2.1 Quantum mechanical gauge theories (d = 1)

Different SU(N) quantum mechanical gauge theories with adjoint scalar fields can behave in

at least three qualitatively distinct ways in the IR. In some theories an attractive effective

potential (at long range) between the eigenvalues of the scalar fields ensures that the

vacuum state is normalizable, and that the spectrum is gapped. In other theories, the

scalar potential has exactly flat directions and the spectrum is ungapped. In yet other

theories the long-range scalar effective potential is repulsive; such theories lack a vacuum

state.

Theories with a mass gap (see section 4 below for a detailed study of one class of

examples) may be thought of as one dimensional analogues of confining theories in d = 4.

In the ’t Hooft large N limit with fixed λ ≡ g2
Y MN [7], the spectrum of such theories is

expected to display a Hagedorn-like growth in the density of states, with a high energy

density of states ρ(E) ∼ exp(E/TH ) for energies which remain finite in the large N limit (see

section 2 of [2] for a simple example). It follows that, upon heating, these theories undergo

a ‘deconfinement’ phase transition at or below their effective Hagedorn temperature TH . In

– 3 –
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other words, the Euclidean partition function on S1 undergoes a phase transition when the

circumference of the compactification circle is larger than or equal to the inverse Hagedorn

temperature. The free energy jumps from O(1) at low temperatures to O(N2) at high

temperatures (where the theory is weakly coupled), so limN→∞ F (T )/N2 may be viewed as

an order parameter for the deconfinement transition. As in four dimensions, the expectation

value of the Polyakov loop 〈tr(P exp(i
∮

A0))〉 in the Euclidean theory is another order

parameter for this phase transition 2.

Theories of the second type (those with a well-defined vacuum but an ungapped spec-

trum — see section 6 below for a detailed study of an example) may be thought of as the

analogues of conformal theories in 4 dimensions. We expect such theories to be ‘deconfined’

at all temperatures. If such theories undergo phase transitions as a function of temperature

(this may or may not happen), the two phases are distinguished by an order parameter

more sensitive than the expectation value of the Polyakov loop or F (T )/N2, each of which

is nonzero in both phases.

We will not consider theories that lack a vacuum state in this paper.

2.2 d = 2 gauge theories

We begin by considering 1+1 dimensional large N SU(N) Yang-Mills theories, with purely

adjoint matter content, on R×time. Our general expectations for the thermodynamics of

such systems are analogous to those for quantum mechanical systems reviewed in the

previous subsection. Gapped theories are expected to have a Hagedorn growth in their

density of states for energies which remain finite in the large N limit (see [2, 8] for examples).

These theories are expected to undergo a deconfining phase transition at or below the

Hagedorn temperature. The free energy is expected to be of order O(N2) (and the Polyakov

loop nonzero) at high temperatures, while the free energy is expected to be O(1) (and

the Polyakov loop vanishes) at low temperatures. On the other hand the free energy in

ungapped theories is expected to be O(N2) (and the Polyakov loop expected to be nonzero)

at all temperatures 3.

However, field theories in d = 2 have additional structure absent in d = 1. It is

possible, and rather natural, to study the thermodynamics of such theories compactified

on a spatial circle. In Euclidean space this thermodynamics is described by the partition

function of the corresponding Yang-Mills theory on a T 2. This opens the possibility for a

much richer phase structure in these models, as we explain in the rest of this subsection.

Recall that we are interested in SU(N) theories which only have fields in the adjoint

representation. For such theories, the gauge group is really SU(N)/ZN , since the gauge

transformations in the ZN center of the gauge group act trivially. Whenever such a theory

2The Polyakov loop vanishes at large circle radius but is non-zero at small radius (there is a subtlety

in this statement; see footnote 5 below). Intuitively, the Polyakov loop vanishes at low temperatures in

a theory with a mass gap because only an infinite number of adjoint photons can effectively screen a

fundamental charge; the mass gap ensures that such a configuration has infinite energy. See section 5.7

of [2] for a more careful and detailed discussion.
3This is true generically, but it is not true in some supersymmetric examples in which the low temperature

free energy is of order N .
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is compactified on a torus, it possesses a (ZN )0 × (ZN )1 global symmetry. This global

symmetry is generated by gauge transformations G that are not periodic on the torus but

instead obey G(xµ+pe0+qe1) = αpβqG(xµ), where e0 and e1 are the fundamental cycles of

the torus (along the 0 and 1 directions) and α and β are both gauge transformations in the

center ZN . All local gauge-invariant operators are uncharged under this global symmetry,

but fundamental Wilson lines that wrap around a (p, q) cycle before closing carry charge

(p, q). Thus, non-zero expectation values for such Wilson loops break this global symmetry.

In particular, an expectation value for the Wilson loop Wµ
4 spontaneously breaks the

(ZN )µ symmetry5, where µ = 0, 1.

As we will see later in this paper, in the decompactification limit R1 → ∞ the symmetry

(ZN )1 is never broken so W1 always vanishes. The Polyakov loop W0 is the sole order

parameter for the system in this limit, making contact with the discussion at the beginning

of this subsection. At finite R1, W0 and W1 are both nontrivial order parameters, allowing

for intricate two dimensional phase diagrams with the four possible phases separated by

phase transition lines. Of course, such a phase diagram in a system that is ungapped

in the decompactification (R1 → ∞) limit (see section 7 for an example) has qualitative

differences from its counterpart in a theory that is gapped in the same limit (see section 5

for examples).

In the large N limit, instead of just considering the Wilson loop Wµ in the fundamen-

tal representation, it is often useful to study the full holonomy matrix Uµ(~x) = Pei
H

Aµ ,

which is a unitary matrix whose trace (in some representation) gives the Wilson loop (in

that representation). The set of eigenvalues of this matrix (which live on the unit cir-

cle) is gauge-invariant, and in the large N limit their distribution along the unit circle is

some continuous function. The (ZN )µ global symmetry described above shifts the phases

of all the eigenvalues of Uµ by an angle of 2π/N . In the ZN -symmetric phase the large

N eigenvalue distribution is constant, while otherwise it is generally maximized at some

particular value, spontaneously breaking the ZN symmetry. Detailed analysis of the eigen-

value distributions sometimes permits a sharp distinction between two phases with the

same symmetry breaking pattern, allowing for the possibility of even more intricate phase

diagrams (interpolating between a larger number of phases) than those described above.

2.3 On dimensional reduction

One of the methods we will use in our analysis is dimensional reduction. Whenever one of

the circles in the problem is very small compared to the other scales, the theory may be

approximated by a theory in one dimension less. So, the functional integral of a (d + 1)-

dimensional gauge theory will approximate, in the limit of a very small circumference

Rd+1 for one of the compact circles, that of a d-dimensional gauge theory, with a coupling

4Where Wµ(~x) = 1
N
〈tr(Pei

H
Aµ)〉 around the circle in the µ direction, for µ = 0, 1.

5Actually we should be more careful here — in fact there is no symmetry breaking at finite volume. The

closest one can come to a ZN symmetry breaking is to have N different saddle points (related by the ZN

symmetry) dominating the path integral, but the path integral sums over all of them. Thus, there will not

really be an expectation value for Wµ, but just for |Wµ|
2 (for example). For the most part we will leave

this issue implicit in our discussions.
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constant λd = λd+1/Rd+1. When the small circle has periodic boundary conditions for

fermions, the lower-dimensional gauge theory has precisely the same field content as the

original theory, except that the zero mode of one of the components of the vector field

becomes a scalar field. When the fermions have anti-periodic boundary conditions on the

small circle (as for thermal boundary conditions on a temporal circle) they are projected

out, leaving only the bosonic fields. Naively, the lower dimensional gauge theory is valid

whenever the Kaluza-Klein scale 1/Rd+1 is much larger than the other compactification

scales 1/Ri and T , and than the dynamical scale Λd = λ
1/(4−d)
d ; the latter condition is the

same as Rd+1 ¿ λ
−1/(3−d)
d+1 = 1/Λd+1.

This argument is naive since an SU(N) gauge theory on a torus actually has excitations

whose classical energies scale as 1/(NRd+1), coming from configurations for which gauge-

invariant sets of eigenvalues are periodic only up to a permutation (these configurations

play a major role in M(atrix) theory). This scale goes to zero in the ’t Hooft large N

limit, so naively we can never ignore all the KK modes in this limit. The importance or

otherwise of these modes (and so the validity of dimensional reduction) is a dynamical issue

determined by the saddle point eigenvalue distribution of the Wilson line operator around

the corresponding circle. The light modes described earlier in this paragraph are present

only when the Wilson line eigenvalues are spread over the circle (the ‘shift’ distribution in

M(atrix) theory language). When the eigenvalues of the Wilson line operator are sufficiently

clumped, these light modes are absent and dimensional reduction is justified. In this paper

we will only use dimensional reduction when this criterion is met.

3. Bosonic matrix integrals (d = 0)

In this section we briefly review the behavior of bosonic SU(N) matrix integrals; we will

find the results of this section useful in our analysis below.

Consider the matrix integral6

Z =

∫
DΦi exp


− N

2λ0
Tr




∑

i

m2
i Φ

2
i −

∑

i<j

[Φi,Φj]
2





 . (3.1)

where i, j = 1, . . . , p, (p > 2) and the Φi are N × N Hermitean bosonic matrices, in the ’t

Hooft large N limit in which N is taken to infinity with constant λ0. Redefining variables

Φi =
√

λ0
mi

ϕi, we find

Z =

∫
Dϕi exp


−N Tr




∑

i

ϕ2
i

2
− λ0

2m2
i m

2
j

∑

i<j

[ϕi, ϕj ]
2





 . (3.2)

Let us first study the limit λ0/m
4
i → 0 (for all i). In this limit the integral factorizes into a

product of p identical integrals, each of which is easily solved by saddle points. The saddle

6Note that in zero dimensions the only difference between a gauged matrix integral and a non-gauged

integral is the volume of SU(N), so we will not need to distinguish the two.
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Figure 1: Graph showing 〈 1

N Tr
∑

i Φ2

i 〉 for the massless matrix integral (3.1) with λ0 = 1 for

various values of p from 3 to 10. The red points correspond to N = 10, the blue to N = 20.

point eigenvalue distribution for (say) ϕ1 is given by the Wigner semi-circle law,

ρ(x) =
2

π

√
1 − x2, (3.3)

and we have
1

N
〈tr

∑

i

Φ2
i 〉 =

λ0

4

∑

i

1

m2
i

. (3.4)

In the simple limit considered above, suitably normalized gauge invariant expectation

values (like 1
N Tr

∑
i Φ

2
i ) are completely determined by a saddle point with sharp edges,

and are independent of N . This follows from rather general considerations (factorization

and ’t Hooft scaling), and so generalizes to most of the systems we study in this paper.

We now turn to the opposite, massless limit of (3.1). It follows from a simple rescaling

(similar to the one we used above) that the eigenvalues are localized on a length scale

a = Kλ
1
4
0 at the corresponding saddle point; Monte Carlo simulations demonstrate that

K is of order unity (see appendix A.1 for more details and references), and the values of

〈 1
N Tr

∑
i Φ

2
i 〉 are shown in figure 1 for various values of p. Sample eigenvalue distributions

which demonstrate a qualitatively similar form to (3.3), including its sharp edge, are shown

in figure 2.

It natural to guess that (3.1) is dominated by a saddle point in which the eigenvalues

of the scalars are sharply localized for all values of mi and λ0. The localization length

scale varies smoothly from approximately
√

λ0/m at large m to approximately λ
1
4
0 at small

m. This expectation is easily verified (at sample values of parameters) by a Monte Carlo

simulation.

4. Bosonic gauge theories in one dimension

In this section we study the quantum mechanical SU(N) Yang-Mills theory coupled to p

– 7 –
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Figure 2: Plots showing the distribution of eigenvalues for the massless matrix integral with λ0 = 1

for p = 3, 5, 10 (left to right), generated by Monte Carlo simulations for N = 20.

adjoint scalar fields (p ≥ 2), whose Euclidean action is given by

S =
N

2λ1

∫
dt tr




∑

i

D0ΦiD0Φi +
∑

i

M2Φ2
i −

∑

i,j

1

2
[Φi,Φj ]

2


 , (4.1)

where D0 is a covariant derivative involving the non-dynamical gauge field A0, we assumed

equal masses for simplicity, and i, j = 1, · · · , p. This theory is believed to possess a unique

normalizable vacuum state, and to have a mass gap in its spectrum, at all values of M

including M = 0. We will study the Euclidean partition function of this theory on a

circle of circumference R, which is the same as the thermal partition function of the quan-

tum mechanical system at temperature T = 1/R. This theory is characterized by two

dimensionless parameters, which we take to be the inverse radius in units of the coupling,

t̃ = 1/(Rλ
1
3
1 ), and the mass in units of the coupling, m = M/λ

1
3
1 . In this section we will

determine the phase diagram of (4.1) as a function of these parameters.

Two asymptotic regions of this phase diagram are amenable to analytic analysis. First,

in the limit of large t̃, (4.1) effectively reduces to the matrix integral (3.1) (as discussed in

section 2); from the analysis of the previous section it then follows that the eigenvalues of

the holonomy matrix7 U0 = Pei
H

A0 are clumped at all values of m at large t̃.

At large m, (4.1) may be analyzed in perturbation theory. In the next subsection we

demonstrate that, in this limit, our system undergoes a first order deconfinement transition

at t̃c ∼ m/ ln(p), and we determine the first correction (in 1/m) to this phase transition

curve. For t̃ > t̃c, the eigenvalues of the Polyakov loop operator are clumped and the ZN

7By an abuse of notation, we will sometimes refer to these as the eigenvalues of the Polyakov loop

operator W0 = 1
N

tr(U0).
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invariance is broken. For t̃ < t̃c the eigenvalues of the Polyakov loop operator are uniformly

distributed and ZN invariance is restored.

The analysis of the two limits described above (and especially the analytic form of

the large m phase transition curve given in the next subsection) suggests that the phase

diagram of (4.1) takes the form shown in figures 3 and 4, with the phase boundary extending

to some fixed temperature for nonzero mass. In sections 4.2 and 4.3 below, we will use

Monte Carlo simulations to plot out this phase diagram in detail, confirming this prediction

and giving a quantitative picture of the phase diagram for all values of the mass.

In section 4.4, we discuss the phase diagram for a closely related theory in which one

scalar remains massless while the rest have mass M ; this theory is relevant to the high

temperature limit of 1+1 dimensional gauge theories with massive adjoint scalars (to be

discussed in section 5). We find similar qualitative behavior, except that the transition

temperature for large mass becomes t̃ ∼ m/ ln(m).

4.1 The large mass limit

When the masses in (4.1) are sufficiently large (m À 1), (4.1) is weakly coupled at all

temperatures, and the thermodynamic behavior can be studied in perturbation theory. As

discussed in [1, 2], it is straightforward to integrate out all massive degrees of freedom in

the weakly coupled limit to obtain an effective action in terms of the sole light degree of

freedom, namely the Wilson line of the gauge field about the circle

U = Pei
H R
0

dtA0 . (4.2)

The partition function then takes the form of a unitary matrix model,

Z =

∫
DUe−Seff (U), (4.3)

where

Seff(U) = p

∞∑

n=1

xn

n
tr(Un) tr(U †n) + O(1/m3), (4.4)

with x ≡ e−MR = e−m/et. In the weak coupling (m → ∞) limit, this matrix model

(for p > 1) undergoes a large N phase transition as a function of t̃, from a low t̃ phase

dominated by a saddle point in which the eigenvalues of U are distributed uniformly around

the circle, to a high t̃ phase in which the eigenvalues of U are clumped in the saddle-point

configuration.

In the strict m → ∞ limit, the phase transition occurs at the point t̃ = m/ ln(p),

and it is (weakly) of first order. However, as discussed in section 6 of [2], the nature of

the phase transition at large but finite m depends on higher order terms in the effective

potential, arising from two and three-loop diagrams. In appendix C, we compute the

effective action (4.4) to three-loop order, and find that after integrating out all scalars

as well as all n > 1 Fourier modes of the eigenvalue distribution function (these are all

massive near the transition), we are left with an effective action for the lowest Fourier mode

– 9 –
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Figure 3: A plot showing the prediction of a first order phase transition at large m À p1/3 from

perturbation theory. The small circle limit suggests localization of the Wilson loop eigenvalues at

large t̃, for fixed m. Then, extrapolating the blue phase boundary would naively indicate that it

meets the t̃ axis.

u1 = 1
N tr(U), of the form

Seff(u1) = N2(m2
1(x, 1/m3)|u1|2 +

1

m6
b(x, 1/m3)|u1|4 + O(1/m12)), (4.5)

where the leading order expressions for m2
1 and b are given in appendix C. Since we find

b < 0 at the transition temperature where m2
1 switches sign, this effective action describes

a phase transition which continues to be first order also for large finite m (as at m → ∞)

(see [2]), and occurs at the critical temperature

t̃c = m/ ln(p) +
1

4m2

(p − 1)(2p + 1)

p ln(p)
(4.6)

− 1

128m5

(p − 1)

p3 ln(p)
(ln(p)(21p2 + 6p) + 48p4 + 20p3 − 17p2 − 20p − 4) + O(1/m8),

which is slightly below the Hagedorn temperature of this theory.

In summary, when m À p
1
3 (so that perturbation theory is reliable), (4.1) undergoes

a first order phase transition at t̃c given by (4.6). For t̃ < t̃c the Polyakov line eigenvalue

distribution is uniform. For t̃ > t̃c ≈ m/ ln(p), the eigenvalues of the Wilson line are

clumped.

It is tempting to extrapolate these results beyond the validity of perturbation theory.

As displayed in figure 3, plotted for p = 4, the phase transition line asymptotes to the line

t̃ = m/ ln(p) for large m, and gradually rises above it as m decreases, until perturbation

theory is no longer valid (at roughly m ≈ p
1
3 ). A naive extrapolation of our weak coupling

results suggests that the phase transition curve will hit the vertical axis (m = 0) at a finite

temperature.

In the rest of this section we will use Monte Carlo techniques to demonstrate that this

guess is indeed correct.
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Figure 4: A plot showing the conjectured phase boundary translated into the λ1, M
2 plane,

choosing units with R = 1. The Monte Carlo data presented below confirms this picture.

4.2 Results for m = 0 from Monte Carlo simulations

The bosonic one-dimensional model (4.1) is rather simple to implement numerically using

elementary Monte Carlo methods. In this section we will discuss the numerical results

for the behavior of the Wilson line eigenvalues in the cases p = 2, 4, 9, characterized by

un = 1
N | tr(Un)| (which vanish for all non-zero values of n in the uniform distribution).

For these diverse values of p we will see that they all have the same qualitative behavior,

and we will link the results to the analytic limits discussed above. Details of the method

may be found in appendix E.

In the massless limit, (4.1) is simply the dimensional reduction of the pure SU(N)

gauge theory in (p + 1) dimensions to one dimension. In this limit (4.1) has a single

dimensionless parameter λ1R
3 = 1/t̃3. As we noted above, at large t̃ this system reduces

to the matrix integral of the previous section (with masses set to zero), and so it lies in a

phase with a clumped distribution of eigenvalues for the Polyakov line. We now describe

results of a Monte Carlo analysis we have performed on this theory.

In figures 5 and 6 we plot the Monte Carlo results for 〈u1〉 and 〈u2〉 in the theory

with p = 9, for various values of N . These results were previously reported in [3]; as we

have reported there, our data strongly suggests a large N transition at 1/t̃3 ' 1.4. As is

apparent from figures 5 and 6, the low t̃ (or large λ1) phase has u1 = 0 and u2 = 0 (more

precisely, u1 and u2 are of order 1/N for finite N). Clearly, u1 and u2 are nonzero (and

hence the eigenvalue distribution is non-uniform) in the high temperature phase. All this

is perfectly in line with the conjecture made in the previous subsection.

As discussed in [3], we have not been able to clearly resolve the order of the phase

transition studied in this subsection. Unfortunately, the phase transition of our system

appears to lie very near the boundary between first and second order behavior (see [3]).

In this situation it is difficult to numerically distinguish between the two reasonable possi-

bilities (see appendix E), which are either a first order phase transition or a second order

– 11 –
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Figure 5: Figure of 〈u1〉 as a function of λ1 for p = 9 with various values of N . We choose units

with R = 1, and thus λ1 = 1/t̃3. We see that as N increases the points to the right of λ1 ' 1.4

appear to decrease, consistent with 1/N scaling. To the left of this value the points appear to tend

to a limiting curve. This indicates a sharp discontinuity in u1 at infinite N , with u1 being an order

parameter. Statistical error bars are comparable to the point sizes.
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N = 30

Figure 6: Figure of 〈u2〉 as a function of λ1 for p = 9 with various values of N . Again a

discontinuous behavior is indicated in the large N limit. As above, we choose R = 1 units.

phase transition followed by another, third order phase transition [2]. However, it is clear

from the data that if the second scenario is correct then the two phase transitions must be

very close together.

We have repeated the analysis of this section at p = 2, 4. We find qualitatively iden-

tical behavior to that reported in the previous paragraphs, but this time with the phase

transition at λcritR
3 = 1/t̃3c ' 0.4, 0.9, respectively.
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Figure 7: Figure of 〈u1〉 in the λ1, M plane (in R = 1 units). The red (top) surface is for N = 6,

blue is N = 12 and green (bottom) N = 20. We see a transition line bounding the origin where

outside the line u1 decreases with increasing N (approximately consistent with 1/N scaling), and

inside the line a limit is approached. The transition line appears to connect the massless transition

to the large m transition. The black mesh of the surfaces gives the sampling density. Thus, the

(small) statistical error can be seen as the ‘roughness’ of the surface.

4.3 Monte Carlo simulations with non-zero mass

We have also performed Monte Carlo simulations of (4.1), as a function of t̃, at various

different values of m. The results of these simulations (which we present in this subsection)

smoothly interpolate between the analytic prediction of subsection 4.1 and the m = 0

results of the previous subsection, allowing us to fill out the phase diagram of (4.1) and to

confirm the guess displayed in figure 4.

In figures 7 and 8 we present three dimensional plots of 〈u1〉 and 〈u2〉 as functions of

λ1R
3 = 1/t̃3 and MR = m/t̃, for the case p = 4 8. An examination of figures 7 and 8

reveals that the m, t̃ plane may be divided into two regions. In the first (uniform) region u1

and u2 decrease as N increases; this decrease is approximately fit by a 1/N decay to zero.

In the second (clumped) region u1 and u2 asymptote to fixed, m and t̃ dependent, nonzero

values. These two regions are divided by a transition line. As in the case of m = 0, u1

appears to jump discontinuously (or at least with a very sharp slope) across this transition

line in the limit N → ∞.

In figures 9, 10, 11 we plot this transition line as a function of m and t̃ (see below for

more details on how exactly this transition line was obtained from our data). In each case

this line interpolates smoothly between the analytic prediction of subsection 4.1 and the

results of the previous subsection. As in the previous subsection, our numerics are unable

8These graphs are best viewed in colour.
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Figure 8: Figure of 〈u2〉 in the λ1, M plane, employing the same conventions as in the previous

figure.
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Figure 9: Contours of ∆12,20〈u1〉 for the p = 2 theory, in the λ1, M plane (in R = 1 units). The

green region is predicted to be in the uniform eigenvalue phase, and the red region in the localized

phase. The blue curve gives the large m perturbative prediction, where the perturbative expansion

is valid. We clearly see that the phase boundary connects the two axes.

to definitively establish the order of the transition; however they are certainly consistent

with the simplest conjecture, which is that the transition (which the computations of
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Figure 10: Contours of ∆12,20〈u1〉 for the p = 4 theory, with the same conventions as above.
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Figure 11: Contours of ∆6,12〈u1〉 for the p = 9 theory, with the same conventions as above.

subsection 4.1 have established to be of first order at large m) remains of first order for all

values of m.

To end this subsection we give a precise definition of the transition lines plotted in

figures 9, 10, 11. We characterize the position of the transition by computing the difference

– 15 –



J
H
E
P
0
1
(
2
0
0
6
)
1
4
0

Figure 12: Figure of ∆6,20〈u1〉 (blue) and ∆12,20〈u1〉 (red) in the λ1, M plane for the p = 4 theory

(taking R = 1 units). We take the zero contour to measure the position of the phase boundary.

between the values of 〈u1〉 for different values of N . ‘Outside’ the phase transition boundary

u1 decreases with increasing N , while ‘inside’ it stays roughly constant (with a small

increase). We may estimate the phase boundary as the line where these differences are

zero, namely the function u1 is neither increasing nor decreasing with increase of N . Of

course, this estimate to the phase transition line becomes more accurate as we increase N .

To illustrate our procedure, in figure 12 we plot ∆6,20〈u1〉 ≡ 〈u1〉(N=6) − 〈u1〉(N=20)

and ∆12,20〈u1〉 ≡ 〈u1〉(N=12) −〈u1〉(N=20). Both surfaces in the plot give a consistent phase

boundary location.

4.4 One massless and p massive scalars

Before concluding this section, we briefly consider a generalization of (4.1) for which one of

the scalars (which we call φ) remains at zero mass, while the other p scalars are massive.

This arises in studying the high temperature limit of a 1+1 dimensional gauge theory with

massive scalars, for which the temporal component of the gauge field leads to a massless

scalar in the dimensionally reduced theory.

The theory behaves in a qualitatively similar manner to the massive theory considered

above. For m → 0, the two theories are the same, while at large m, we will see that

both theories have a phase boundary at a temperature which goes to infinity as m goes to

infinity, though with different dependence on m.

In this limit, it is again appropriate to integrate out the massive scalars at one loop

to generate an effective potential for φ and the holonomy matrix U . The φ independent

terms will be given by (4.4) as before, with corrections negligible as long as m À p1/3. At
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very large m, the most important φ-dependent term will be a mass term9

Seff =

∫
dt

λ1p

2M
tr(φ2). (4.7)

The leading φ4 interaction comes with a coefficient g2
φ ∼ λ2

1/NM3, and can be ignored

relative to the quadratic terms when integrating out φ as long as

mφ/(g2
φN)

1
3 À 1 ⇒ m À 1. (4.8)

There will be additional terms involving both φ and U , but these are nonlocal and will

be suppressed exponentially by powers of e−RM for large R. We should be able to ignore

these if

RM À 1 ⇒ t̃ ¿ m. (4.9)

When all these conditions are satisfied, we may integrate out the scalar φ at one loop (using

only the kinetic term and mass term) to obtain additional terms in the effective action for

U . The result (including terms we have already from integrating out the scalars of mass

M) is

Seff(U) =

∞∑

n=1

1

n
(pxn + xnε) tr(Un) tr(U †n), (4.10)

where x = e−MR = e−m/et as before and ε is the ratio of the induced φ mass to the X

masses,

ε =

√
p

m
3
2

¿ 1. (4.11)

This theory has a deconfinement phase transition when

px + xε = 1

⇒ px + ε ln(x) = 0

⇒ x =
ε

p

(
ln

(p

ε

)
+ O

(
ln

(
ln

(p

ε

))))

⇒ t̃ =
2

3

m

ln(m)

(
1 + O

(
ln(ln(m))

ln(m)

))
. (4.12)

Note that at this temperature, (4.8) and (4.9) are both satisfied, so our analysis is self

consistent. Thus, we conclude that at large m, the phase transition temperature goes as

t̃ = 2
3m/ ln(m).

5. Two dimensional bosonic gauge theories on T
2

In this section we study the two dimensional large N SU(N) Yang-Mills theory coupled to

p Hermitian scalar fields in the adjoint representation,

S =
N

2λ

∫
d2x tr

{
F 2

12 +
∑

I

[(
∂µΦI − i

[
Aµ,ΦI

])2
+ m2

IΦ
2
I

]
−

∑

I<J

[
ΦI ,ΦJ

]2

}
, (5.1)

9Here, φ is normalized to have a kinetic term
R

dt tr( 1
2
(D0φ)2).
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with I, J = 1, · · · , p. Viewed as a 1 + 1 dimensional quantum field theory, this theory

is believed to possess a unique normalizable vacuum state and a Hagedorn growth in its

density of states (see [8] for the special case p = 1). We will study the partition function

of the Euclidean theory on a rectangular torus with radii R1 and R2, as a function of the

geometry and masses (in units where the coupling is fixed). We will investigate this system

in two separate limits; first when all scalars are massless, and second when all scalars have

large mass.

In this case, the geometry has two non-contractible cycles, so any saddle point con-

figuration will be characterized by two holonomy matrices which we call U and V . At

each point in parameter space, we will ask whether the eigenvalues of these matrices in the

saddle point configuration are clumped or unclumped (uniformly distributed on the unit

circle), and so obtain a phase diagram containing four possible phases. The phase diagram

will turn out to be similar in the massless and large mass limits, and so we believe it is

likely to have the same structure for any value of the mass.

5.1 The massless theory

We first consider the theory (5.1) in the limit where the scalar masses are zero. We wish

to understand the phase diagram of this theory on a rectangular torus, as a function of its

two dimensionless parameters, which we can choose to be r1 = R1

√
λ and r2 = R2

√
λ, the

circumferences of the spatial and temporal circles in units where the coupling is set to one.

Since there is nothing to distinguish the two circles, the phase diagram must be symmetric

under the exchange r1 ↔ r2.

Let us first review what we know about the theory in the limit r1 → ∞ keeping r2 fixed;

this limit gives the decompactified system at a temperature 1/R2. At low temperatures this

system is believed to confine, with a Hagedorn tower of glueball states (see [8] for a proof for

the case p = 1). As the temperature is raised, the system undergoes a sharp deconfinement

transition at a temperature of order
√

λ. In Euclidean space the order parameter for

this phase transition is the expectation value of the Wilson line around the x2 circle; the

eigenvalues of this Wilson line are clumped at high temperatures but uniformly smeared

over the circle at low temperatures. Thus, for large r1, we expect a deconfinement transition

line which asymptotes to a constant r2 of order unity. Exchanging the two circles, we must

then have also a phase transition line for large r2 asymptoting to constant r1, across which

the eigenvalues of the Wilson line in the x1 direction clump as we decrease r1.

We now turn to the opposite limit where the spatial circle R1 is very small. When

the Kaluza-Klein scale 1/R1 is much larger than the scale λ
1/3
1 set by the effective one-

dimensional coupling λ1 = λ/R1 and also much larger than the temperature 1/R2, the

theory will reduce to the one-dimensional theory considered in the previous section with

p + 1 massless scalars. The parameter t̃ of the previous section is given in terms of the

two-dimensional parameters by

t̃ =
1

R2λ
1
3
1

=
r

1
3
1

r2
. (5.2)
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Thus, in the regime r1 ¿ 1 and r1 ¿ r2 we expect a phase transition along the curve

r2 =
1

t̃
(p+1)
c

r
1
3
1 (5.3)

where t̃
(p+1)
c is the critical value of t̃ in the one-dimensional theory with p + 1 massless

scalars. The eigenvalues of U (the holonomy around R2) will be clumped or unclumped

for values of r2 below or above this line (again assuming that r1 ¿ 1 and r1 ¿ r2).

Again, we may swap the role of the two circles and conclude that there is an additional

phase transition along the curve

r2 = (t̃(p+1)
c )3r3

1 (5.4)

such that the eigenvalues of V (the holonomy around R1) are clumped/unclumped above/

below the curve, in the regime of validity r2 ¿ r1 and r2 ¿ 1.

Note that these results rely on the numerics of the previous section, however, in the

regime

r
1
3
1 À r2 À r3

1 (5.5)

all non-zero modes are weakly coupled and can be integrated out at one loop (see ap-

pendix A) so we are able to verify analytically that both U and V are clumped in this

regime.10

Putting all this together, we conclude that the phase diagram of (5.1) for m À 1 takes

the form shown in figure 13. We have sketched three possible simple completions of this

phase diagram, however, our current lack of understanding of the dynamics at r1, r2 ∼ 1

prevents us from distinguishing between these three possibilities.

The phase transitions in figure 13 are driven by the strongly coupled dynamics of a

field theories’ worth of degrees of freedom, and so are difficult to analytically control. In

the following subsections, we will see that as for the one-dimensional theories considered in

section 4, analytic analysis becomes possible in the opposite limit when the scalar masses

become large, m À 1, where we take mI = M and define the dimensionless mass parameter

m = M/
√

λ.

5.2 M = ∞
First, consider the strict limit M → ∞. In this limit all scalar fields may simply be

set to zero and (5.1) reduces to pure two dimensional Yang-Mills theory on a torus, an

exactly solvable system. Over 30 years ago [9], Migdal rewrote the partition function of

two dimensional Yang-Mills theory on a torus in terms of an integral over the two unitary

holonomy matrices

Zym =

∫
DU DV

∑

R

dRe−
eλ

2N
C2(R)χR(UV U−1V −1), (5.6)

10Naively, we might expect that the theory should admit a perturbative analysis as long as the torus

area is small in units of the coupling. In fact, as in finite temperature computations in 3+1 dimensional

theories, this naive expectation is modified by infrared effects (see [3] for a discussion of this point). The

correct regime of validity may be obtained by requiring that the R1 circle should be small in units of the

one-dimensional coupling λ/R2 and that the R2 circle should be small in units of the one-dimensional

coupling λ/R1, leading to (5.5).
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?
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Figure 13: Known aspects of the phase diagram of massless bosonic SU(N) gauge theories with

three possible completions. U is the expectation value of the holonomy in the x2 direction, and V

is the expectation value of the holonomy in the x1 direction.

where

λ̃ = λR1R2 = r1r2. (5.7)

Here, the sum over R runs over all representations of the SU(N) gauge group, and dR and

C2(R) are the dimension and the quadratic Casimir of the representation R (see appendix D

for a brief derivation). It is not difficult to integrate out one of the two matrices — say, V

— in (5.6), to obtain an effective action for U ,

Zym =

∫
DU

∑

R

e−
eλ

2N
C2(R)χR(U)χR(U †) , (5.8)

which may be evaluated to obtain [10 – 13]

Zym =
∑

R

e−
eλ

2N
C2(R) . (5.9)

For our analysis below, it will be useful to note (see appendix D) that at large N , (5.8)

may be written as

ZY M =

∫
DU exp

(
∑

n

1

n
(−e−

eλn + 2e−
eλn
2 ) tr(Un) tr(U−n)

)
. (5.10)

Equation (5.10) may be rewritten as an integral over the moments of the eigenvalue density

function as

ZY M =

∫
dundūn exp

(
−N2

∑

n

1

n
(e−

eλn
2 − 1)2|un|2

)
, (5.11)
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where the moments, un, are related to U by

un ≡ 1

N
tr(Un). (5.12)

Note that the coefficients of |un|2 in (5.11) are positive for all n; it follows that ZY M is

dominated by the saddle point un = 0 for all n, in which the eigenvalue distribution is

uniform. Of course, the same result is true for the eigenvalues of the holonomy matrix V .

Thus we conclude that, independent of the torus radii, the eigenvalues of both holonomy

matrices are unclumped for pure Yang-Mills theory on T 2.

Notice that at small λ̃ the effective mass for un in (5.11) is very small (the mass squared

is approximately nλ̃2/4). As a consequence, in this regime a small attractive perturbation

could cause the eigenvalues to clump. We will now argue that such a perturbation is

supplied by the effective potential generated by scalar fields ΦI at large but finite mass.

5.3 Large M , noncompact limit

We first note that when R1 is larger than any other length scale in the problem, the theory

should behave like the noncompact thermal 1+1 dimensional theory with very massive

scalars. This theory was analyzed in [14]. There, it was argued that by integrating out all

degrees of freedom except the spatially dependent holonomy matrix (in the R2 direction)

U(x), the system reduces to the model

S =

∫
dx

{
N

2λR2
tr(|∂xU |2) − p

√
M

2πR2
e−MR2 tr(U(x)) tr(U †(x))

}
. (5.13)

Using collective field theory methods, they showed that this model displays a first order

deconfinement transition at a temperature corresponding to

r2 =
2

m
ln(m)

(
1 + O

(
ln(ln(m))

ln(m)

))
. (5.14)

Thus, our model will have a phase transition curve asymptoting to this value for large

r1. Above the curve (corresponding to the noncompact theory at low temperatures), the

eigenvalues of the temporal holonomy U will be unclumped, while below it, they will be

clumped. By symmetry, there must be an additional phase boundary asymptoting to

r1 ∼ 2
m ln(m) at large r2, across which the eigenvalues of the spatial holonomy V clump.

5.4 Large M , small volume

We may now ask about the opposite limit, where R1 is so small that the theory is effectively

one-dimensional. Assuming that the eigenvalues of V are clumped (we will see that this

is the case for small enough R1), the theory will behave as a one dimensional theory with

p massive scalars and one massless scalar (from the spatial component of the gauge field)

as long as the Kaluza-Klein scale 1/R1 is much larger than the mass M , the temperature

1/R2 and the scale
√

λ of the gauge theory, yielding conditions

r1 ¿ r2, r1 ¿ 1/m, r1 ¿ 1. (5.15)
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Here, the last relation is implied by the second for large m.

In the language of section 4, the corresponding one-dimensional theory will have pa-

rameters t̃ = r
1
3
1 /r2 and m1 = mr

1
3
1 . From the results of section 4.4, we expect that this

theory undergoes a phase transition at some t̃c(m1) for all values of m1, where t̃c rises from

some value t̃
(p+1)
c of order one for small m1 and asymptotes to 2m1/(3 ln(m1)) for large m1.

Expressing these results in terms of our two-dimensional parameters, we predict a phase

transition at

r2 =
r

1
3
1

etc(mr
1
3
1 )

(5.16)

which gives

r1 =

{
r3
2(t̃

(p+1)
c )3 r1 ¿ 1

m3

r2
2

pme2mr2 1
m3 ¿ r1 ¿ 1

m

(5.17)

where to derive the last expression we used the equation in the second line of (4.12). For

larger values of r1, the conditions (5.15) are no longer satisfied, so the theory is no longer

well approximated by a one-dimensional theory.

The transition line (5.17) separates a region with clumped U eigenvalues (for smaller

r2) from a region with unclumped U eigenvalues (for larger r2). By symmetry, we will have

an addition phase boundary separating regions of clumped and unclumped V eigenvalues,

obtained by the replacement r1 ↔ r2 in (5.17).

5.5 Large M , intermediate radius

At intermediate values of R1, neither of the approximations so far apply, but the theory

is still simple enough to treat analytically as long as the scalar masses are very large. In

this case, we can reliably integrate out the scalars at one-loop order, leading to an effective

action

S =
N

2λ

(∫
d2x tr(F 2

12)

)
+

p

2
ln det(−D2

µ + M2) (5.18)

for the gauge fields. The explicit expression for the determinant will in general be quite com-

plicated, with local terms built from the gauge field strength and its covariant derivatives,

together with non-local terms involving the Wilson lines about the spatial and temporal

cycles. The former will be small relative to the tree-level F 2 term as long as m À 1.

The non-local terms involving the holonomy around a cycle fall off exponentially with the

radius of the cycle in units of the inverse scalar mass, but we will see that these terms are

important even when this exponential is very small (equal to an inverse power of m).

For sufficiently small R1 and R2 (we will be more explicit below), terms involving the

spatially varying modes of the fields will be suppressed, and it is enough to consider the

effective action assuming that the components A1 and A2 of the gauge field (and hence the

holonomy matrices) are spatially constant. In appendix B, we show that up to commutator

terms, the result for the effective action in this case is

Seff =
p

2
ln det(−D2

µ + M2)
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= −p
∑

(k,n)6=(0,0)

tr(UnV k) tr(U−nV −k)MR1R2

K1

(
M

√
R2

1k
2 + R2

2n
2
)

2π
√

R2
1k

2 + R2
2n

2
(5.19)

→ −p
∑

(k,n)6=(0,0)

tr(UnV k) tr(U−nV −k)
√

MR1R2

exp
(
−M

√
R2

1k
2 + R2

2n
2
)

2
√

2π(R2
1k

2 + R2
2n

2)
3
4

,

where in the last line we have taken the limit of large MRi and used the asymptotic form

of the associated Bessel function K1.
11 Note that if MR1 and MR2 are both sufficiently

large, all terms will be small relative to the (k, n) = (0,±1) and (k, n) = (±1, 0) terms. In

addition, the commutator terms that we have not written necessarily involve at least two

powers of U and two powers of V , so we expect them to be suppressed at least as strongly

as the U2V 2 terms above.

Thus, when the spatially varying modes can be ignored and both MR1 and MR2 are

large, the effective action from the scalars is well approximated by

Seff(U, V ) = f(U) + g(V ), (5.20)

where

f(U) = − p√
2π

R1

R2

√
MR2e

−MR2 tr(U) tr(U †) ,

g(V ) = − p√
2π

R2

R1

√
MR1e

−MR1 tr(V ) tr(V †) . (5.21)

Note that f comes from the second term in (5.13) if we take the integral to run over a finite

range R1 and ignore the non-zero modes of U(x). Both the kinetic term and the potential

term in (5.13) will produce quadratic terms in the non-zero modes of U(x). By demanding

that the relative coefficient for the potential term is small, we obtain an explicit condition

for when the non-zero modes of U(x) may be ignored,12

r2
1 ¿ 1√

mr2
emr2 . (5.22)

Similarly, the non-zero modes of V (x) can be ignored when

r2
2 ¿ 1√

mr1
emr1 . (5.23)

When all of our assumptions apply, the partition function becomes (using (5.18) and (5.6))

Zym =

∫
DU DV

∑

R

dRe−
eλ

2N
C2(R)χR(UV U−1V −1)e−f(U)e−g(V ). (5.24)

11When U and V commute, this is precisely a pairwise potential between the N points on the dual torus

formed by the simultaneous eigenvalues of U and V .
12This condition is most appropriate in the regime r1 À r2 where (5.13) is valid, but this is the only place

we will need it in what follows. Similarly, the equation for the non-zero modes of V (x) is the appropriate

condition for the regime r2 À r1 .
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Making the change of variables U → WUW−1 for unitary W , and integrating over W

(more details in appendix D), we find

Zym =

∫
DU DV

∑

R

e−
eλ

2N
C2(R) d2

R

d2
R − 1

e−f(U)e−g(V ) (5.25)

{
−1 + χR(V )χR(V †) + χR(U)χR(U †) − 1

d2
R

χR(U)χR(U †)χR(V )χR(V †)

}
.

For large N , the coefficient d2
R/(d2

R − 1) can be set to one.

From this expression, we would like to understand the behavior of our order parameters,

ln(Zym)/N2 and the expectation values for the temporal and spatial Wilson loops. We note

first that for the purposes of computing the partition function or any observable depending

on either U or V alone, the last term in (5.25) can be ignored relative to the other terms as

long as R1M and R2M are large enough. For, suppose we evaluate the partition function

with an operator O(U) inserted. Then in the last two terms of (5.25), the V dependent

terms may be collected inside the U integral to obtain

∫
DV e−g(V )

{
1 − 1

d2
R

χR(V )χR(V †)

}
= Zg

{
1 − 〈 1

d2
R

χR(V )χR(V †)〉g
}

. (5.26)

Here, Zg and 〈〉g are the partition function and expectation values for the unitary matrix

model with action g(V ). But as long as the coefficient in g(V ) is small,

r2 ¿ 1

p

√
r1

m
emr1 , (5.27)

such a model will be dominated by the repulsive eigenvalue potential from the measure,

and display confining behavior with a uniform eigenvalue distribution for the saddle point.

In this case, the expectation value in (5.26) will vanish for large N , since this is just the

norm squared of the Polyakov loop in the representation R. In other words, term by term

in the sum over R in (5.25), the contribution from the last term will be negligible relative

to the contribution from the third term. Similarly, if we insert any operator O(V ), the last

term will be negligible compared to the second term as long as

r1 ¿ 1

p

√
r2

m
emr2 . (5.28)

Let us now assume that both (5.27) and (5.28) are satisfied and consider first the

partition function (5.25) with no operator inserted. We then obtain

ZY M = −ZM=∞ZgZf + ZfZS∞(V )+g + ZgZS∞(U)+f (5.29)

where ZM=∞ is the partition function (5.9) for the pure Yang-Mills theory, and S∞ is

the action in the expression (5.8) for the pure Yang-Mills partition function reduced to a

single matrix integral. Now, ZM=∞, Zg, Zf are all finite for large N (when our conditions

are satisfied) since they correspond to confining theories, so ZY M will show deconfined

behavior if and only if either ZS∞(V )+g or ZS∞(U)+f does.
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Using the large N result (5.10) to get an explicit expression for S∞ and rewriting in

terms of the modes of the eigenvalue distribution, we find

ZS∞(U)+f
=

∫
dundūn exp

(
−N2

∑

n

1

n
(1 − e−

r1r2n
2 )2|un|2+ N2 p√

2π

r1

r2

√
mr2e

−mr2 |u1|2
)

.

(5.30)

We see that the scalar effective potential gives a negative contribution to the mass squared

for the lowest Fourier mode of the eigenvalue distribution. Thus, u1 becomes tachyonic,

and the free energy in (5.30) becomes of order N2, when

p√
2π

r1

r2

√
mr2e

−mr2 > (1 − e−
r1r2

2 )2. (5.31)

Since we assumed that the left-hand side is very small, this can only happen when r1r2 ¿ 1.

Similarly, ZS∞(V )+g will show deconfining behavior when

p√
2π

r2

r1

√
mr1e

−mr1 > (1 − e−
r1r2

2 )2. (5.32)

These two curves intersect at

r1 = r2 =
4

m
ln(m)

(
1 + O

(
ln(ln(m))

ln(m)

))
, (5.33)

and together form part of the boundary of the region with free energy of order one and both

U and V unclumped. Note that the curve (5.31) exits the region where (5.22) is satisfied

when r1 ∼ m/ ln(m2) and r2 has decreased to be of order 2 ln(m)/m. Beyond this, we can-

not trust the functional form (5.31) of the curve, but we have already argued in section 5.4

that there should be a phase boundary asymptoting to precisely this value, suggesting that

our result (5.31) matches on smoothly to the large R1 behavior (and similarly for (5.32) ).

Noting that r1r2 ¿ 1 on the curve (5.31) everywhere that (5.22) is satisfied, we can write

a more explicit expression for the phase boundary in this region,

r1 =
4p√
2π

√
m

r
5
2
2

e−mr2 r1 < r2 ¿ 1

r1

r2 =
4p√
2π

√
m

r
5
2
1

e−mr1 r2 < r1 ¿ 1

r2
(5.34)

Note that the conditions (5.27) and (5.28) are satisfied for all such values.

To see what happens on the deconfined side of this boundary, let us now understand

the behavior of the order parameters 〈| tr(U)|2/N2〉 and 〈| tr(V )|2/N2〉, focusing for now on

the first one. As we have argued above, the last term in (5.25) can be ignored in computing

either of these, so by the arguments leading to (5.29), we obtain

〈 1

N2
| tr(U)|2〉 =

−ZM=∞ZgZf 〈|u1|2〉f + ZfZS∞(V )+g〈|u1|2〉f + ZgZS∞(U)+f 〈|u1|2〉S∞(U)+f

−ZM=∞ZgZf + ZfZS∞(V )+g + ZgZS∞(U)+f

(5.35)
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Now, in the region of interest, at least one of ZS∞(U)+f or ZS∞(V )+g behaves as exp(cN2)

so the first terms in both the numerator and denominator (which are at most of order one

in N) will be completely negligible here. In the remaining expression,

〈 1

N2
| tr(U)|2〉 =

ZfZS∞(V )+g〈|u1|2〉f + ZgZS∞(U)+f 〈|u1|2〉S∞(U)+f

ZfZS∞(V )+g + ZgZS∞(U)+f
(5.36)

even when both ZS∞(U)+f and ZS∞(V )+g have exp(cN2) behavior, the larger will completely

dominate in both numerator and denominator, so

〈 1

N2
| tr(U)|2〉 =

{ 〈|u1|2〉f = 0 ZS∞(V )+g > ZS∞(U)+f

〈|u1|2〉S∞(U)+f 6= 0 ZS∞(U)+f > ZS∞(V )+g
(5.37)

The model with larger magnitude for the free energy will be the one for which the |u1|
mode is more tachyonic, and by inspection of (5.21), this will be the S∞(U) + f model for

R1 > R2 and the S∞(V ) + g model for R2 > R1.

Thus, from (5.37) and the analogous result for 〈|v1|2〉 = 〈| tr(V )|2/N2〉, we conclude

that there is a phase boundary at r1 = r2 starting from curve (5.34) and continuing

towards the origin, such that the eigenvalues of U are clumped and the eigenvalues of V

are unclumped for R1 > R2 while the opposite is true for R2 > R1. This phase boundary

cannot continue all the way to the origin, since we have argued in section 5.5 that both

sets of eigenvalues are clumped for small enough r1 = r2. Indeed, in ignoring the higher

order terms in (5.19), we have assumed that R1M and R2M are large, so we can only say

with certainty that the phase boundary exists in the region 1/m ¿ r1 = r2 < 4 ln(m)/m.

For smaller values of r, the phase boundary must bifurcate symmetrically, and we expect

that the two curves thus produced connect smoothly onto the two phase boundaries which

we argued in section 5.4 emanate from the origin.

5.6 Summary of the large mass theory

Combining all of our results, we conclude that the phase diagram for large N Yang-Mills

theory with very massive adjoint scalars compactified on a rectangular torus appears as

in figure 14. Here, solid lines indicate regions where we have been able to determine the

analytic form of the phase boundary. Note that this diagram displays the same qualitative

behavior as one of the possible completions of the massless phase diagram (figure 13), so

it seems reasonable to speculate that the phase structure is qualitatively identical for all

values of the scalar masses.

In figure 15, we present an alternate version of the diagram, with axes labeled by the

size of the spatial circle in units of the coupling (r1 = R
√

λ) and the temperature in units

of the spatial radius (TR = r1/r2). Analogous units were used in our analysis [2, 15] of

3+1 dimensional Yang-Mills theory on a sphere, where our analysis suggested a single first

order transition extending from large volume to a finite value of TR in the zero volume

limit. In the present case, it is interesting to note that:

1. The solid line corresponding to deconfinement as measured by the temporal Wilson

loop expectation value is not smooth.
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tr(U)   0
tr(V)   0

r 1

tr(U)   0
tr(V)   0

tr(V)   0
tr(U)   0
tr(V)   0

tr(U)   0

r 2

Figure 14: Phase diagram for Euclidean two-dimensional Yang-Mills theory with massive adjoint

scalars on T 2. Solid lines indicate phase boundaries for which we have analytic expressions.

R λ1/2

tr(U)   0
tr(V)   0

tr(V)   0
tr(U)   0

tr(U)   0
tr(V)   0

tr(U)   0
tr(V)   0

TR

Figure 15: Phase diagram for 1+1 dimensional Yang-Mills theory with massive adjoint scalars on

S1. The free energy is of order one in the shaded region and of order N2 elsewhere.

2. While the deconfinement transition does extend all the way to zero volume as for the

topologically trivial case, the transition temperature does not approach a finite value

in units of the inverse spatial radius.

3. The large volume regions for both the confined and deconfined regions are separated
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by phase transitions from the small volume regions.

4. The two order parameters for confinement, 1/N2 times the free energy and the ex-

pectation value of the Polyakov loop, do not have the same behavior at small and

large volumes in this example. More specifically, in the “confined” region below the

solid line, the free energy is of order one at large volume, but it becomes of order N2

to the left of the dotted line.

6. Maximally supersymmetric quantum mechanics

In the rest of this paper we will study one and two dimensional maximally supersymmetric

gauge theories on circles and tori. As is well known, Yang-Mills theories with 16 super-

charges display rather different dynamics from their bosonic counterparts; in particular the

scalar effective potential in these theories has flat directions, and the spectrum of these

theories is not gapped. As a consequence we expect (see section 2) that the phase diagrams

of these theories (which we will obtain) will differ in significant aspects from the equivalent

diagrams for the purely bosonic theories of the previous sections.

Partition functions of supersymmetric theories on tori are strongly dependent on the

boundary conditions of the fermions around cycles of the tori. When all fermions are

periodic, the path integral is localized on supersymmetric configurations (and computes

a Witten Index [16]). These path integrals depend weakly (if at all) on parameters, and

do not undergo phase transitions. In this paper we will focus on the dynamically more

interesting path integrals with anti-periodic boundary conditions for fermions; these are

relevant in particular for studying finite temperature.

In this section we consider the maximally supersymmetric SU(N) Yang-Mills theory

in one dimension, in the ’t Hooft large N limit13. The Euclidean Lagrangian is given by

S =
N

λ1

∫
dt tr

(
1

2
D0ΦiD0Φi +

i

2
Ψ†D0Ψ − 1

4
[Φi,Φj ]

2 +
1

2
Ψ†γi[Φi,Ψ]

)
, (6.1)

where i, j = 1, · · · , 9 and Ψ is a real 16 component spinor. The time direction is identified

with a period β = 1/T ; the bosonic fields are periodic in this direction and the fermions

are anti-periodic. The theory may be characterized by the single dimensionless parameter

t̃ = T/λ
1/3
1 , in terms of which the effective dimensionless ’t Hooft coupling is 1/t̃3.

As the fermions are anti-periodic about the circle, all fermion modes acquire large

masses as the circle shrinks to zero size, so in the small radius or large t̃ limit, our the-

ory behaves identically to the bosonic theory considered in section 3; in particular, the

eigenvalues of the holonomy matrix are clumped on the circle.

In the opposite, small t̃, limit the quantum mechanics is strongly coupled; but in this

case, we can use a dual description to understand the dynamics.

13It is important to distinguish this from the M(atrix) theory large N limit [17], which is conjectured

to describe the light-cone quantization of a flat-space gravitational theory (M-theory) and has a different

thermodynamic behavior.
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We recall that the ’t Hooft limit of massless maximally supersymmetric 0+1 dimen-

sional Yang-Mills theory is believed [18, 19] to be dual to type IIA string theory in the

near horizon limit of the extremal black D0-brane solution of type IIA string theory. This

background has a reliable description in terms of type IIA supergravity (small curvatures

in string units and weak string coupling) for a range of the radial coordinate corresponding

to energy scales E ¿ λ
1/3
1 = (g2

1N)
1
3 in the quantum mechanics.14

Similarly, the finite temperature quantum mechanics in the ’t Hooft limit should be

dual to a near-extremal version of this geometry. This dual geometry contains a horizon,

and type IIA supergravity is a valid description near the horizon as long as t̃ ¿ 1. The

presence of a horizon in the Lorentzian geometry implies a contractible thermal circle in

the associated Euclidean geometry. Thus, the expectation value of the (traced) Wilson line

around the circle in the gauge theory, which is mapped in the string theory (after adding to

it some dependence on scalar fields) to the action of a string worldsheet ending on the ther-

mal circle [20 – 22] is non-zero. This implies that the eigenvalue distribution is non-uniform.

Therefore, for the massless supersymmetric theory, the eigenvalues of the Wilson line

operator seem to be clumped (or at least non-uniformly distributed) at both large and

small values of t̃, so the phase transition that we found in the bosonic theory appears to

be absent here.

This disparity of behavior between the bosonic and supersymmetric theories at low

temperatures should not come as a surprise; indeed, their zero temperature dynamics

is completely different. In the purely bosonic theory, the classical flat directions in the

potential are completely removed by quantum fluctuations which result in a linear potential

between the spatial eigenvalues. The resulting spectrum should be discrete. On the other

hand, for the supersymmetric theory, the quantum fluctuations generate only the well-

known ẋ4/|x|7 potential between eigenvalues, and the spectrum is continuous.

As for the bosonic theory, we can consider more generally a massive deformation.

The simplest such deformation has equal masses for all scalars and fermions (of course,

this breaks supersymmetry). In the limit of large mass, all fermion and scalar modes are

weakly coupled, so as for the bosonic theory, we may integrate out the matter at one loop

to reduce the partition function to a unitary matrix model. The result is similar to (4.6),

but with p = 17 (assuming that all fields have the same mass). Thus, for large enough

masses, we again have a phase transition from clumped eigenvalues at large t̃ to a uniform

distribution for small t̃, with t̃c = m/ ln(17) + O(1/m2). Since we have a phase transition

for t̃ ≈ m/ ln(17) at large m and no phase transition at m = 0, it must be that the phase

transition line intersects the t̃ = 0 axis either at m = 0 or at some small non-zero value of

m. There is certainly a qualitative change in the theory as soon as a mass is turned on, since

the zero temperature potential goes from being flat asymptotically (with a corresponding

continuous spectrum) to asymptotically harmonic (with a discrete spectrum). While this

motivates a possible phase transition, it is not clear how to directly relate this information

to the behavior of our order parameter.

14For large but finite N , the type IIA supergravity description is also no longer valid at low energies,

when E ¿ g
2/3
1 N1/7, but this scale goes to zero in the ’t Hooft large N limit.
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7. Maximally supersymmetric Yang-Mills theory on T
2

In this section, we would like to study the thermodynamics of maximally supersymmetric

1+1 dimensional Yang-Mills theory on a circle, corresponding to the Euclidean theory on

T 2. In this case, the fermions are anti-periodic about the thermal circle, but we have a

choice between anti-periodic and periodic boundary conditions for the spatial circle. In

fact, we will see that both possibilities are included if we make the natural generalization

to non-rectangular tori.

7.1 General tori: classification and fundamental regions

In this subsection we will classify and describe the inequivalent tori on which maximally

supersymmetric Yang-Mills theory can be compactified. We specify our torus by two

identifications:

z ∼ z + L ∼ z + Lτ (7.1)

(where τ = τ1 + iτ2 is the modular parameter), and further specify that all fermions are

anti-periodic around both of these cycles. Below we will denote the holonomy along the

cycle z ∼ z + L as V and the holonomy along z ∼ z + Lτ as U . The phase diagram we

wish to determine is a function of three real dimensionless variables: the complex variable

τ and the dimensionless coupling constant λ̃ = g2
Y MNA, where A = L2τ2 is the area of the

torus.

Bosonic Yang-Mills theories on tori whose τ parameters are related by an SL(2, Z)

transformation (τ → (aτ + b)/(cτ + d) with integers a, b, c, d satisfying ad − bc = 1) are

identical at equal values of λ̃. It is thus sufficient to study such theories in the familiar

SL(2, Z) fundamental domain, denoted by the region I in figure 16.

The supersymmetric Yang-Mills theory we will study in this section includes fermions;

the partition function for this theory will be identical (at equal values of λ̃) only on those

tori that are related by the subgroup of SL(2, Z) that preserves our fermion boundary

conditions. This group is generated by τ → −1/τ and τ → τ + 2. The fundamental

domain for this subgroup is the union of the regions I, II and IV in figure 16. In this

section we will study the Yang-Mills partition function on tori with modular parameters

lying in this fundamental domain.

To end this subsection we comment on the physical interpretation of tori in regions II

and IV. Tori on the two vertical lines that border the diagram in figure 16 have modular

parameters of the form τ = ±1 + iτ2 (with real τ2). These tori are best thought of as

rectangular tori with τ ′ = iτ2, with periodic boundary conditions on fermions along the

τ ′ cycle (the fermion boundary conditions remain anti-periodic along the ‘1’ cycle). In

general, a torus in the region IIb/a with modular parameter τ may be thought of as a

torus in the region I, with τ ′ = τ ± 1 and periodic boundary conditions along the τ ′ cycle.

Similarly, a torus in the region IV b/a may be reinterpreted as a torus in the region I with

τ ′ = −1/(τ ± 1) and periodic boundary conditions along the ‘1’ cycle.
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Figure 16: Fundamental region of the modular group for a theory with fermions.

7.2 Analysis at small λ̃

As discussed in previous sections, at small λ̃ the Kaluza Klein modes of the field theory

on T 2 may reliably be integrated out at one loop, provided that λ̃/M4 is small, where M

is the mass of the lightest KK mode in units in which the area of the torus is one. When

this integrating out is legitimate, the resulting determinant (see appendix A) ensures that

the eigenvalues for both holonomies U and V clump.

Expanding all fields (take a scalar field φ(z) as an example) on the torus in Fourier

modes subject to the periodicity φ(z) = φ(z + L) = φ(z + Lτ) gives

φ(z) =
∞∑

m,n=−∞
φm,n exp

[
2πi

Lτ2
(τ2mRe(z) + (n − τ1m)Im(z))

]
, (7.2)

leading to M2 = 4π2

τ2

(
m2|τ |2 + n2 − 2mnτ1

)
(in units of 1/L). For bosonic fields m and n

are integers, while for fermions m + 1/2 and n + 1/2 are integers.

In regions I and II the lightest non-zero-mode for scalars is the (m = 0, n = ±1) mode

with M2 = 4π2/τ2. So, we can integrate out all the KK modes at one loop reliably in

regions I and II if

λ̃τ2
2 ¿ 1. (7.3)

For larger values of τ2 all modes with m 6= 0 (the boundary conditions ensure that this

includes all the fermions) are still very heavy and decouple, so we can study the theory
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Figure 17: The phase transition line at τ2 ∼ 1/
√

λ̃ and its images, for a specific value of λ̃.

by including only the m = 0 modes. The resulting quantum mechanical theory is simply

the bosonic quantum mechanics of section 4, with R = Lτ2 and coupling λ1 = λ/L, giving

an effective dimensionless coupling λ̃τ2
2 . It follows from the analysis of section 4 that the

system undergoes a phase transition at τ2 = a/
√

λ̃, where a is a number of order unity,

determined in the analysis of section 4. At larger values of τ2 one of the ZN symmetries of

the system is restored, and 〈tr(U)〉 = 0.

In region IVa the lightest mode is (m = n = ±1), with mass

M2 =
4π2

τ2

(
(1 − τ1)

2 + τ2
2

)
(7.4)

(the IVb region is related to this by (τ1 → −τ1,m → −m)). The KK modes are weakly

coupled and can be integrated out provided that

λ̃τ2
2

((1 − τ1)2 + τ2
2 )2

¿ 1. (7.5)

When (7.5) is not obeyed (but still λ̃ ¿ 1), all modes with n 6= m become very heavy and

decouple. The resulting effective quantum mechanical theory of the light modes includes

fermions, and is, in fact, precisely the one dimensional supersymmetric quantum mechan-

ics of section 6. We have argued that it is unlikely that this system undergoes a phase

transition. It seems that our system is in the 〈tr(U)〉 6= 0, 〈tr(V )〉 6= 0 phase throughout

region IV.

Mapping regions I and II by the (allowed) modular transformations we find an infinite

number of images of the phase transition line τ2 = a/
√

λ̃, which are drawn in figure 17.

For example, in region III this line is mapped by the τ → −1/τ transformation to the line

(τ ′
2 −

√
λ̃/2a)2 + τ ′2

1 = λ̃/4a2. Above this line both holonomies are clumped, 〈tr(U)〉 6= 0

and 〈tr(V )〉 6= 0, while below the line (in region III) 〈tr(V )〉 = 0.
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To summarize, a torus is characterized by its modular parameter τ . If we scale the ’t

Hooft coupling constant appropriately then the partition function of the theory is a modular

invariant function on the τ plane. Thus, we only need to study it in the fundamental region

(which is different from the standard one because of the fermions). In this region we find

a single phase transition line where the eigenvalues of the Wilson loop along the longer

fundamental cycle clump. This line has an infinite number of images on the τ plane through

modular transformations. Above we gave the results for the case of two anti-periodic cycles

for the fermions, but the case of one periodic cycle (corresponding, in particular, to the

finite temperature theory) is simply related to this by τ → τ + 1.

7.3 Strong coupling from AdS/CFT

When the effective coupling λ̃ is large, the theory cannot be analyzed using perturbative

techniques, but we can use the AdS/CFT correspondence to study the phase structure of

the system.

The dual of the 1 + 1 dimensional maximally supersymmetric Yang-Mills theory in

the ’t Hooft large N limit is the near-horizon geometry of the D1-brane metric of type

IIB string theory [19]. If we put the gauge theory on a spatial circle of circumference L

then the dual theory is obtained by a periodic identification of the spatial coordinate. If we

want to study the theory at temperature T we have to consider the near extremal D1-brane

solution. The relevant Euclidean string frame metric and dilaton are:

ds2 = α′


 u3

√
d1λ′

(
1 − u6

0

u6

)
dt′2

L2
+

u3

√
d1λ′

dθ′2

(2π)2
+

√
d1λ′

u3
(
1 − u6

0
u6

)du2 + u−1
√

d1λ′dΩ2
7


 ,

(7.6)

eφ = 2π
λ′

N

√
d1λ′

u6
, (7.7)

where λ′ = λL2, d1 = 26π3, u2
0 = 16π5/2

3 TL
√

λ′, we have to identify t′ ∼ t′ + 1/T to avoid

the conical singularity at u = u0, and the periodicity of θ′ is 2π. There is also a 3-form

field which we do not explicitly write down. Defining ρ = TL and changing coordinates to

t = t′T and θ = ρθ′

2π , we can write the metric in the form:

ds2 = α′


 u3

√
d1λ′ρ2

[(
1 − u6

0

u6

)
dt2 + dθ2

]
+

√
d1λ′

u3
(
1 − u6

0
u6

)du2 + u−1
√

d1λ′dΩ2
7


 , (7.8)

with u2
0 = 16π5/2

3 ρ
√

λ′. Now, defining a complex coordinate z = t + iθ, we have the

identifications z ∼ z + 1 ∼ z + iρ, and the conformal boundary of this geometry is a

rectangular T 2. The parameter ρ appears both in the identifications and explicitly in (7.8),

but in fact we can get rid of it in the metric by noting that the form of (7.8) is invariant

under a rescaling u → αu, u0 → αu, λ′ → α2λ′, ρ → αρ. If we use this rescaling with

α = ρ−1 we can rewrite (7.8) as

ds2 = α′


 u3

√
d1λ̂

[(
1 − u6

0

u6

)
dt2 + dθ2

]
+

√
d1λ̂

u3
(
1 − u6

0
u6

)du2 + u−1

√
d1λ̂dΩ2

7


 , (7.9)

– 33 –



J
H
E
P
0
1
(
2
0
0
6
)
1
4
0

with λ̂ = λ′/ρ2 and u2
0 = 16π5/2

3

√
λ̂. Since now ρ appears only in the identifications, it

is clear that if we change the identifications to z ∼ z + 1 ∼ z + τ with τ = τ1 + iτ2 an

arbitrary complex number, we still have a solution to IIB supergravity (with the same u0)

without any singularities, whose asymptotic boundary is a torus of modular parameter τ .

If we want to compute the thermal partition function of the field theory living on the

boundary we have to consider all supergravity (or more generally string theory) solutions

Xi with the appropriate behavior at infinity. The partition function of the dual gauge

theory in the large N limit is:

Zgauge =
∑

i

exp(−I(Xi)), (7.10)

where I is the Euclidean action of the supergravity (string theory) solution.

Let’s say that we want to compute the partition function of supersymmetric Yang-

Mills (SYM) theory on a torus of modular parameter τf . It is clear that solutions of the

form (7.9) contribute to the partition function only if the asymptotic T 2 of the supergravity

solution can be conformally mapped to the T 2 on which the gauge theory lives. This is

possible if and only if the modular parameter of the torus of the gravity τg is related to τf

by some modular transformation. So we have to start from the supergravity solution with

τg = τf , consider all modular transformations of τg, and then sum the exponentials of the

Euclidean action of the corresponding supergravity solutions [23, 24].

In general all solutions will contribute to the partition function. But we notice that the

Euclidean action scales as N2, so in the large N limit we get the dominant contribution from

the solution with the smallest Euclidean action. This allows for sharp phase transitions in

the N → ∞ limit, if the solution with the minimum action changes discontinuously as we

vary the parameters of the theory.

If we try to compute the Euclidean action of any of the solutions we find that it

diverges as we integrate over all space. However we are not interested in the value of

the action but in comparing the action of different solutions. One way to compare the

actions is to match the solutions (metric and other fields) at some large cutoff value of

the radius, calculate the action difference and then send the value of the cutoff to infinity.

The divergent terms cancel once the geometries are properly matched, and one obtains a

finite result. Alternatively one can add counter-terms to cancel the divergences, leading to

equivalent results.

Before we proceed we must clarify two subtle points:

(a) Not all solutions with different τg are different. For example, it is easy to see that

τg and τg ± 1 describe the same supergravity solution. The asymptotic torus of the

supergravity solutions has a cycle that is special, namely the (1, 0) cycle (labeled by

t) which is contractible in the interior. It is fairly easy to see that all inequivalent

geometries can be characterized by specifying the cycle (p, q) of the gauge theory

torus onto which the (1, 0) cycle of (7.9) is mapped when we conformally match the

two tori. The two integers p and q have to be relatively prime.
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(b) We have to be careful about the boundary conditions of the fermions and the spin

structures of the supergravity solutions. If there is a circle factor in the asymptotic

geometry then we can choose either periodic or anti-periodic boundary conditions

for the fermions along this circle if it is not contractible in the interior. However,

if it is contractible then only anti-periodic boundary conditions are allowed. In our

case the (1, 0) cycle of the gravity torus is contractible, so it has to be mapped to

an anti-periodic cycle of the gauge torus. Since in our gauge theory analysis above

we chose anti-periodic boundary conditions for the fermions on the (1, 0) and (0, 1)

cycles of the gauge theory, we conclude that the acceptable geometries of (a) are

those with p + q odd.

Let us now analyze which solutions we have to include for a specific gauge theory on a

torus with parameter τ whose partition function includes a contribution from (7.9). Up to

a change of coordinates all these solutions should have the same asymptotics as (7.9), and

they should involve identifications by some modular parameter τ ′ which is related by an

SL(2, Z) transformation to τ . It is easy to verify that for this to be the case the parameters

of the two metrics have to be related by λ̂′τ ′
2 = λ̂τ2, and the u coordinates of the two

metrics are related by u′√τ ′
2 = u

√
τ2. Note that the relation between the λ̂’s is precisely

the one we expect from the field theory point of view, for the two theories to have the

coupling constant times area.

A straightforward computation of the (regularized) Euclidean action of the IIB solu-

tion (7.9) gives:

I =
9N2V7

64λ̂2π9
τ2

∫ R

u0

duu5, (7.11)

where R is some very large radial position and V7 is the volume of the unit 7-sphere. Using

the results of the previous paragraph we see that if we compute I(X1) − I(X2) for two

solutions with τ and τ ′ related by a modular transformation, the divergent parts cancel

and we find:

I(X1) − I(X2) =
32N2V7

9

√
λ̂τ2π3/2

(
−τ

3/2
2 + τ

′3/2
2

)
, (7.12)

where we used u2
0 = 16π5/2

3

√
λ̂. So, using the invariance of λ̂τ2, we conclude that the

solution with the minimum action is the one which has the maximum value of τ2 (and is

consistent with p + q = odd).

Let us now see how this works in different regions of the τf plane. In regions I and

II the geometry that dominates is τg = τf . It maps the (1, 0) cycle of the gravity torus

to the (1, 0) cycle of the gauge torus. Any other solution with τg related by a modular

transformation has a smaller τ2 so it has a bigger action. Since the (1, 0) cycle is the only

contractible cycle in the gravity solution, the Wilson loop around it will generically be

nonzero 〈tr(U)〉 6= 0, while all Wilson loops around any other cycle will be zero. Though

it takes a little more work to see it, region IV is also dominated by the same geometry15.

15In region IVa there is the geometry with the largest τ2 is the τg = − 1
τf−1

.However this would map the

contractible (1, 0) cycle to (1,±1) which is a periodic cycle, so this is not an acceptable solution.
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r 1

t 

t 

tr(U)   0
tr(V)   0

tr(U)   0
tr(V)   0

tr(U)   0
tr(V)   0

r 2

large λ
~

small λ
~

Figure 18: Conjectured phase diagram for SYM on a rectangular torus with anti-periodic boundary

conditions on both cycles.

So, in summary, a single saddle point (7.8) dominates the thermodynamics of strongly

coupled Yang-Mills theory on a torus in the fundamental region (the union of I, II, IV ).

The (1, 0) cycle is contractible on this solution, so 〈tr(V )〉 = 0 and 〈tr(U)〉 6= 0 in this

phase. For other regions we can find the dominant solution by mapping them into the

fundamental region.

7.4 Putting it together

Let us summarize our understanding of the phase structure of this system. We begin

by discussing tori with τ = it where t is real. At weak coupling the system is in the

〈tr(U)〉 6= 0, 〈tr(V )〉 = 0 phase at large t. At t = a/
√

λ̃ the system undergoes a phase

transition; at smaller values of t the system is in the 〈tr(U)〉 6= 0, 〈tr(V )〉 6= 0 phase. At

t =
√

λ̃/a the system undergoes another phase transition, to the 〈tr(U)〉 = 0, 〈tr(V )〉 6= 0

phase. On the other hand, at strong coupling the analysis of the previous subsection shows

that the system undergoes exactly one phase transition at t = 1. When t > 1, 〈tr(U)〉 6= 0

and 〈tr(V )〉 = 0. On the other hand, when t < 1 〈tr(V )〉 6= 0 and 〈tr(U)〉 = 0. The

phase diagram in figure 18 summarizes this behavior, and provides the simplest possible

interpolation between these two limits.

Next, recall that a torus with Re(τ) = 1 may equally well be regarded as a rectangular

torus with τ ′ = τ − 1 but with periodic boundary conditions along the τ axis. Following
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tr(U)   0
tr(V)   0

tr(U)   0
tr(V)   0

r 2

r 1

large λ
~

small λ
~

(antiperiodic)

(periodic)

Figure 19: Phase diagram for SYM on a torus with one periodic and one anti-periodic boundary

condition for the fermions. The large λ̃ transition here is seen in the dual IIA description as a

Gregory-Laflamme transition [3].

previous discussion in [3] we expect a phase transition associated only with the V holonomy,

seen as a Gregory-Laflamme transition in the type IIA string description which is obtained

by performing a T-duality on the periodic torus direction. Hence, we expect the phase

diagram of figure 19 (or equivalently figure 1 in [3]). From the analysis in [3] we expect the

phase transition to occur at t ∼ 1/λ̃ for large λ̃. Note that this phase transition involves a

new solution (localized in the T-dual direction) which is not included in the discussion of

the previous subsection.

Using this information we conjecture the phase structure for a general value of τ . In

figure 20 we show the two phase boundaries we expect for clumping of the V holonomies

in the fundamental domain as a function of τ and λ̃. For large λ̃, the relevant boundary

(shown in red) coincides with the boundary of the fundamental domain and corresponds

also to anti-clumping of the U holonomy. For small λ̃, the relevant boundary (shown

in blue) involves only the transition of the V holonomy. As discussed earlier, modular

transformations of this latter surface give other phase surfaces associated with transitions

of different holonomies; for example, the clumping of the U holonomy is given by τ → −1/τ .

The Re(τ) = 0 slice reproduces the previous figure 18 when converting to r1, r2 coordinates

and including this U transition. Likewise, the Re(τ) = 1 slice reproduces figure 19. Note

that we expect that the two phase transition surfaces (red and blue) do not join smoothly

for any Re(τ), and their intersection moves to larger λ̃ as we move nearer Re(τ) = 1,

eventually leaving only the two phases with clumped U holonomy that are seen in [3].

By comparing figures 18 and 19 with the phase diagrams 13 and 14 of section 5, it

is clear that for either choice of spatial boundary conditions, the supersymmetric theory
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Figure 20: Conjectured phase boundaries for the V holonomy shown in the fundamental domain

for general values of λ. The phase transition associated with the blue surface involves only the V

holonomy, whilst the red surface corresponds also to a transition of the U holonomy.

has qualitatively different behavior from the bosonic theory. Curiously, the bosonic the-

ory and the supersymmetric theory with anti-periodic-anti-periodic, anti-periodic-periodic,

and periodic-periodic boundary conditions, have four, three, two, and one distinct phases,

respectively.
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A. One-loop effective potentials for zero modes

In this appendix, we shall derive the one-loop effective action for the zero modes of SU(N)

gauge theories with adjoint scalar fields in various dimensions, by integrating out all massive

modes. We begin in appendix A.1 with an analysis of the effective action for the diagonal

modes in the 0-dimensional matrix integral and its implications for the matrix integral

discussed in section 3. The same analysis applies also to the KK zero modes of higher

dimensional theories; in appendix A.2 we add the contribution of the higher KK modes

as well, and in appendix A.3 we consider the one-loop contribution for supersymmetric

Yang-Mills theories.

A.1 The zero mode integral

In this subsection we investigate the effective action for the matrix integral with p massless

scalar fields discussed in section 3,

Z =

∫
Dψα exp


− N

4λ0

∑

α,β

tr

([
ψα, ψβ

]2
)

 , (A.1)

where α, β = 1, · · · , p. The same integral (except that some of the ψα’s become periodic)

arises for the zero modes of a d-dimensional gauge theory on T d with pd scalar fields and

coupling constant λd; in this context p = pd + d since additional scalar fields arise from the

gauge field, and λ0 is λd divided by the volume of the T d.

A naive extrapolation of the formula (3.4), giving the width of the eigenvalue distri-

bution for large masses, to small masses would suggest that the eigenvalue distribution is

infinitely spread out at m = 0. This estimate is too crude since it ignores the effect of

the quartic restoring term in (A.1). Taking this term into account, a simple dimensional

analysis suggests that the characteristic width scale for the eigenvalue distribution at the

saddle point for m = 0 is given by a = Kλ
1
4
0 , where K is independent of N and λ0. The

N dependence of this estimate follows from ’t Hooft scaling, while the λ0-dependence is

deduced from a simple change of variables in (A.1). However, this scaling argument cannot

rule out the possibility that K = ∞, a danger that seems real given the fact that the

quartic restoring term in (A.1) vanishes along a noncompact ‘moduli space’ along which

all the matrices commute (and so may simultaneously be diagonalized). Consequently,

the question of whether or not the eigenvalues in (A.1) clump at m = 0 is a dynamical

issue 16. One way to analyze this is by an analysis of the quantum effective action on the

classical moduli space [27 – 29] that is obtained by integrating out the off diagonal modes.

The generic effective mass of an off-diagonal mode is of order a, the width of the eigen-

value distribution. Consequently, as in the analysis of the massive theory in section 3, the

effective coupling for the off diagonal modes is ∼ λ/a4; these modes may accurately be

integrated out at one-loop provided that this coupling is small. This one-loop computation

16See [25] for a rigorous proof of the convergence of this integral, and [26] and references therein for a

nice review and more details.
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was performed in [28] and is reproduced, for the convenience of the reader, in the following

paragraphs.

Let us expand around a configuration in which all matrices ψα are diagonal with eigen-

values ψα
i (i = 1, · · · , N), and integrate out the off-diagonal components of the matrices

in (A.1) at 1-loop. Expanding the action (A.1) to quadratic order in the off-diagonal modes,

we find

Squadratic
zeromode =

N

4λ0

∑

α6=β

∑

i<j

[
(∆ψα)2ij ψβ

ijψ
β
ji − (∆ψα)ij

(
∆ψβ

)
ij

ψα
ijψ

β
ji

]
, (A.2)

where we defined (∆ψα)ij = ψα
i − ψα

j . Naively, integrating out the (ij)’th off-diagonal

components of all the matrices simply yields det(M)−1, where M is the matrix

Mαβ = δαβ
∑

γ

(∆ψγ)2ij − (∆ψα)ij(∆ψβ)ij . (A.3)

However, the eigenvalues of the matrix M are easily seen to be [
∑

γ(∆ψγ)2ij ] with degener-

acy p−1 and zero with degeneracy one. The appearance of the zero eigenvalue is a result of

the fact that we have neglected the existence of flat directions in the space of off-diagonal

components, due to the remaining SU(N) gauge symmetry of (A.1), which can be used to

rotate the diagonal components into off-diagonal components.

To correct for this, we eliminate these flat directions by using the SU(N) symmetry to

diagonalize one of the ψα, say ψ1, exactly. Performing this diagonalization by inserting a

gauge-fixing δ-function introduces the Fadeev-Popov determinant factor

det
([

ψ1, ∗
])

∼
∏

i6=j

(
∆ψ1

)
ij
∼

∏

i<j

(
∆ψ1

)2

ij
, (A.4)

where we have evaluated the determinant at 1-loop.

Note that this factor is nothing more than the Vandermonde determinant appearing

in the change of variables from the matrix ψ1 to its eigenvalues.

Now there are no longer any off-diagonal components for ψ1 in (A.2). This has the

effect of removing the first row and column from the matrix M in (A.3). The eigenvalues of

the resulting matrix are [
∑

γ(∆ψγ)2ij ] with degeneracy p− 2 and
(
∆ψ1

)2

ij
with degeneracy

one. Having computed the relevant determinant, we may now write the contribution to the

path integral from the gauge-fixing and from integrating out the off-diagonal components

of the zero modes as
∏

i<j

(
∆ψ1

)2

ij
[∏

i<j (∆ψ1)2ij

]{∏
i<j

[∑
γ (∆ψγ)2ij

]p−2
} . (A.5)

The Fadeev-Popov factor in the numerator cancels the contribution from the eigenvalues

depending only on ψ1, leaving us with an expression which (as expected) is symmetric

under permutations of the ψα’s,

∏

i<j

[
∑

γ

(∆ψγ)2ij

]2−p

. (A.6)
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Thus, we find that the one-loop contribution to the matrix integral may be expressed

as an integral over the eigenvalues of the matrices,

Z ∝
∫ ∏

α,i

dψα
i

1
∏

i<j

(∑
γ(ψγ

i − ψγ
j )2

)(p−2)
valid when a4 À λ0. (A.7)

In the large N limit it is natural to rewrite this in terms of an eigenvalue distribution func-

tion ρ(ψα), and to evaluate the integral by saddle points (since the action is proportional

to N2).

As all pairwise eigenvalue forces are attractive, the minimum of the action is attained

when all eigenvalues sit at a point. Unfortunately this saddle point lies outside the domain

of validity of (A.7), since it has a = 0. Thus, the one-loop analysis does not suffice to

analyze the matrix integral, though it does reliably show that the eigenvalues attract each

other at large distances. A more precise analysis shows that on the saddle point of (A.1)

the eigenvalues have a sharply localized distribution with the scale a ∼ λ
1
4
0 , as suggested

by the scaling arguments presented earlier in this section. This is verified by the Monte

Carlo simulations shown in section 3, and was originally shown by similar methods in [29].

In summary, the behavior of (A.1) is qualitatively unaffected as the effective coupling

constant λ0/m
4 is varied from zero to infinity. The eigenvalue distribution of the matrix

1
N (

∑
α(ψα)2) in (A.1) is governed by a saddle point that is always strictly localized; the

localization length is given by a2 = pλ
4m2 f( λ

m4 ), where f(0) = 1 and f(x) ∝ 1/
√

x at large x.

A.2 Integrating out KK modes at 1-loop

We now consider a d-dimensional gauge theory compactified on a torus T d with circles of

circumference Rµ (µ = 1, · · · , d), and compute the effect of integrating out the KK modes

at 1-loop on the effective action for the diagonal zero modes which we computed in the

previous subsection. Consider the d-dimensional bosonic action17

S =

∫
ddx

N

4λ
tr


FµνFµν +

∑

I

2DµφIDµφI −
∑

I,J

[
φI , φJ

]2


 , (A.8)

with p − d scalar fields, such that the zero mode action is given by (A.1), where ψµ

(µ = 1, · · · , d) are the zero modes of Aµ, and ψd+I (I = 1, · · · , p − d) are the zero modes

of φI . We expand the fields Aµ, φI in KK modes Aµ,{mλ},ij , φ
I
{mλ},ij, with mode numbers

mλ ∈ Z around the λ’th circle. Expanding the action to quadratic order, we obtain

S =
N

4λ0

∑

{mµ}

∑

i<j





∑

ν




∑

µ6=ν

(
(∆ψµ)ij −

2πmµ

Rµ

)2

+
∑

I

(
∆ψd+I

)2

ij


 |Aν,{mλ},ij|2

+
∑

I



∑

µ

(
(∆ψµ)ij −

2πmµ

Rµ

)2

+
∑

J 6=I

(
∆ψd+J

)2

ij


 |φI

{mλ},ij|
2

17If there are also fermionic fields, they decouple from the bosons at 1-loop so we can consider them

separately as we will do below.
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−
∑

µ6=ν

(
(∆ψµ)ij −

2πmµ

Rµ

)(
(∆ψν)ij −

2πmν

Rν

)
Aµ,{mλ},ijA

∗
ν,{mλ},ij

−
∑

I 6=J

(
∆ψd+I

)
ij

(
∆ψd+J

)
ij

φI
{mλ},ijφ

∗,J
{mλ},ij (A.9)

−
∑

µ,I

(
(∆ψµ)ij −

2πmµ

Rµ

)(
∆ψd+I

)

ij

[
Aµ,{mλ},ijφ

∗,I
{mλ},ij + c.c.

]


 .

Let us now perform a naive first attempt at integrating out the KK modes at one-loop.

Defining a vector Dα
ik,{mλ} as

Dik,{mλ} =

(
(∆ψµ)ik − 2πmµ

Rµ
,
(
∆ψd+I

)
ik

)T

, (A.10)

we see that performing the quadratic integral over KK modes in (A.9) yields a factor of

det(M ′)−1, with

M ′ =
(
DT D

)
I − DDT , (A.11)

similar to what we found in the zero dimensional case. This determinant is easily evaluated,

as the eigenvalues of M ′ are again DTD with degeneracy p − 1 and zero with degeneracy

one. The appearance of a zero eigenvalue is not surprising. Indeed, it is expected as we

have yet to fix the gauge. A convenient set of gauge-fixing constraints to adopt is the

following:

∂1A1 = 0,

∂2

∫
dx1 A2 = 0,

∂3

∫
dx1 dx2 A3 = 0,

. . .

∂d

∫
dx1 . . . dxd−1Ad = 0. (A.12)

For each constraint, we must also insert an appropriate Fadeev-Popov determinant factor.

For the generic constraint

∂n+1

∫
dx1 dx2 . . . dxn An+1 = 0, (A.13)

the corresponding determinant takes the form

(n)

det (∂n)
(n)′

det (∂n+1 − i [An+1, ∗]) , (A.14)

where the superscript (n) is used to indicate that the determinant is taken over all modes of

the gauge field that are constant in x1, . . . , xn, while the prime in the second determinant

indicates that it also includes only non-zero modes in xn+1. We neglect the first, constant,

determinant and evaluate the second one at one-loop, finding

∏

i6=j

∏

mµ

((
∆ψn+1

)
ij
− 2πmn+1

Rn+1

)
=

∏

i<j

∏

mµ

((
∆ψn+1

)
ij
− 2πmn+1

Rn+1

)2

, (A.15)
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where the product over mµ is suitably constrained. Summarizing, we find that our gauge-

fixing procedure introduces a factor of
(
(∆ψn)ij − 2πmn/Rn

)2
for each mode of the gauge

field which has m1 = · · · = mn−1 = 0 and mn 6= 0.

Returning now to the task of integrating out the KK modes in (A.9), we write the

gauge fixing constraints (A.12) as

A1
r,m2,m3,...,md

= 0

A2
0,r,m3,...,md

= 0

. . .

Ad
0,0,...,0,r = 0, (A.16)

where r 6= 0 and the other mµ are arbitrary. It is now easy to see that, for every choice

of mode numbers {mλ}, exactly one component of the gauge field, say Aν,{mλ}, is elimi-

nated by these constraints. When the corresponding row and column are removed from

M ′, the eigenvalues become DT D with degeneracy p− 2 and
(
(∆ψν)ij − 2πmν/Rν

)2
with

degeneracy one. Each factor of
(
(∆ψν)ij − 2πmν/Rν

)2
that arises for a gauge field com-

ponent eliminated by the gauge-fixing conditions, though, serves to cancel a corresponding

factor from the Fadeev-Popov determinants (A.15), so that the final result obtained from

gauge-fixing and integrating out KK modes at 1-loop is given by exp(−Seff,bos), where

Seff,bos = (p − 2)
∑

~m∈Zd

∑

i<j

ln

[
∑

µ

(
(∆ψµ)ij −

2πmµ

Rµ

)2

+
∑

I

(
∆ψd+I

)2

ij

]
. (A.17)

We have included also the terms (A.6) obtained from integrating out the off diagonal zero-

modes. Like (A.7), the result corresponds to a pairwise logarithmic effective potential

between the eigenvalues, but now these live on the dual torus in the gauge field directions,

so we have additional interactions between the eigenvalues and the infinite set of image

eigenvalues. These image interactions (corresponding to the sum over ~m) ensure that the

full result is periodic. This sum may be evaluated explicitly using the results of appendix B,

and we find

Seff,bos = −2

(
∏

µ

Rµ

)
(p − 2)

∑

i<j

θ
d/2
ij (2π)−d/2

∑

~k∈Zd−{~0}

1
(∑

µ k2
µR2

µ

)d/4
ei

P
µ kµRµ(∆ψµ)ijKd/2


θij

√∑

µ

k2
µR2

µ


 , (A.18)

where θ2
ij is defined as

θ2
ij =

∑

I

(
∆ψd+I

)2

ij
. (A.19)
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A.3 Generalization to supersymmetric field theories

It is a simple matter to include also fermionic fields, if they exist. Assuming that the

Yukawa couplings to the scalars are the same as the gauge couplings, as in supersymmetric

gauge theories, and that the fermions are periodic around (d − 1) of the circles but anti-

periodic around the d’th circle, the appropriate determinant is easily computed and found

to yield

∏

mν

∏

i<j




d−1∑

µ=1

(
(∆ψµ)ij −

2πmµ

Rµ

)2

+

((
∆ψd

)

ij
− 2π(md + 1

2)

Rd

)2

+
∑

I

(
∆ψd+I

)2

ij




p−2

.

(A.20)

As with (A.17), this corresponds to a pairwise potential between each eigenvalue and an

infinite series of “images” of the remaining eigenvalues, except that the potential has the

opposite sign and the coordinates of the images are shifted by a half period in any direction

for which the fermions are anti-periodic.

Combining (A.6), (A.17), and (A.20), as appropriate for a supersymmetric gauge the-

ory on a torus, we arrive at the full result:

Z =

∫
dψα

i

∏

mν

∏

i<j

(A.21)




∑d−1
µ=1

(
(∆ψµ)ij − 2πmµ

Rµ

)2
+

((
∆ψd

)
ij
− 2π(md+ 1

2
)

Rd

)2

+
∑

I

(
∆ψd+I

)2

ij

∑d−1
µ=1

(
(∆ψµ)ij − 2πmµ

Rµ

)2
+

(
(∆ψd)ij − 2πmd

Rd

)2
+

∑
I (∆ψd+I)

2
ij




p−2

.

Using the results of appendix B we can again evaluate the product over mode numbers

and obtain an effective action for the eigenvalue separations. The contribution from the

fermionic sector is identical to the bosonic result (A.18), with the exception of an additional

factor of (−1)kd+1 in the sum. As a result, the fermions serve to eliminate half of the terms

in the kd sum. Our final result for Seff thus becomes:

Seff = −4

(
∏

µ

Rµ

)
(p − 2)

∑

i<j

θ
d/2
ij (2π)−d/2

∞∑

kµ=−∞

∑

kd odd

1
(∑

µ k2
µR2

µ

)d/4
ei

P
µ kµRµ(∆ψµ)ijKd/2


θij

√∑

µ

k2
µR2

µ


 . (A.22)

A.4 Analysis of the effective potentials for d = 2

We will now focus on the case d = 2, and argue that for both the bosonic and the su-

persymmetric cases, the eigenvalues of the gauge field will be clumped in all directions

whenever the one-loop effective potentials (A.17) or (A.21) are reliable.

The contribution of the zero modes (corresponding to the ~m = 0 terms in the bosonic

contribution to the potential) was discussed in appendix A.1, and we concluded that this

leads the eigenvalues to clump at a scale

a ∼ λ
1/4
0 , (A.23)
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where λ0 = λ/(R1R2). The additional terms in the effective potential correspond to the

interactions with image eigenvalues. These interactions will be negligible for the clumped

configuration as long as the scale (A.23) is much smaller than either 1/R1 or 1/R2 (i.e.

when the distance to the nearest image charge is large compared with the distances between

eigenvalues in the clump).18 Since the KK-mode terms are important for configurations

that are not highly clumped, we may worry that the full effective potentials (A.18) or (A.22)

could have additional saddle point configurations. However, a quick analysis shows that

in either case, the full effective potential (periodic in the directions corresponding to the

gauge field eigenvalues) is attractive both for the scalar and for the gauge field zero modes,19

so the eigenvalues are driven towards the clumped saddle point for which the KK-mode

contributions are negligible. We conclude that the eigenvalues are clumped on a scale (A.23)

whenever
(

λ

R1R2

) 1
4

¿ 1

R1
and

(
λ

R1R2

) 1
4

¿ 1

R2
. (A.24)

We see that the eigenvalues spread out relative to the sizes of the dual circles as either R1 or

R2 increases, suggesting a possible phase transition when either of the inequalities in (A.24)

is violated. However, the effective coupling of the lightest KK-modes is λ0/m
4
KK , so when

the relations (A.24) are not satisfied, either the R1 or the R2 KK-modes become strongly

coupled and we can no longer trust our perturbative results for the effective potential.

Therefore, other methods (discussed in the main text) are required to deduce the presence

(or not) of a phase transition as the eigenvalues spread.

A.5 Integrating out massive scalars

Before closing this section, we describe the result of integrating out a set of p very massive

adjoint scalar fields in a two dimensional gauge theory on T 2. In general, the one-loop result

is given by (5.18), where Dµ is the covariant derivative for the adjoint representation. Here,

we consider the special case where the gauge fields are constant commuting matrices, so

that the holonomies are U = eiR2A2 and V = eiR1A1 . Then

Seff =
p

2
ln(det(−D2

µ + M2))

=
p

2
tr(ln(−D2

1 − D2
2 + M2))

=
p

2
tr

(
∑

m,n

ln

((
2πn

R1
+ A1

)2

+

(
2πm

R2
+ A2

)2

+ M2

))

18It is not immediately obvious that the infinite set of image charges does not conspire to produce a

larger effect, but because of cancellations between ~m and −~m terms in the potential, it may be checked

that the sum of contributions from all charges is of the same order of magnitude as the contribution from

the nearest charge.
19There is one qualitative difference between the bosonic and supersymmetric cases. In the supersym-

metric case, the potential between two eigenvalues actually goes to infinity as the eigenvalues approach

antipodal points in the anti-periodic directions, since in this configuration there is a (repulsive) image

charge from one eigenvalue sitting on top of the other eigenvalue.
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= − p

2π
MR1R2

∑

k,l

tr(U lV k) tr(U−lV −k)
K1(M

√
(kR1)2 + (lR2)2)√

(kR1)2 + (lR2)2
(A.25)

where in the last line, we have used a result from appendix B.

B. Infinite products

In evaluating the determinants involved in integrating out Kaluza-Klein modes and massive

scalars in the main text and in appendix A, we encounter infinite products whose logarithm

gives an infinite sum of the form

P (~a) =
∑

~m

ln(θ2 + (~m + ~a)2). (B.1)

Here, the sum runs over all vectors ~m in d dimensions with integer components. Now, P

is clearly periodic in each component of ~a, with period 1. Thus, we can write

P (~a) =
∑

~k

e2πi~k·~aP~k
, (B.2)

and we can compute the Fourier transform of P :

P~k =

∫ 1

0
da1 · · ·

∫ 1

0
dad

∑

~m

ln(θ2 + (~m + ~a)2) e−2πi~k·~a

=
∑

~m

∫ m1+1

m1

da1 · · ·
∫ md+1

md

dad ln(θ2 + ~a2) e−2πi~k·~a

=

∫
d~a ln(θ2 + ~a2) e−2πi~k·~a

= limε→0

(
− ln(ε) −

∫ ∞

ε

dα

α
e−αθ2

∫
d~a e−α~a2−2πi~k·~a

)

= C∞ − π
d
2

∫ ∞

0

dα

α
d
2
+1

e−αθ2−π2k2

α

= C∞ − 2
θ

d
2

|~k| d
2

K d
2
(2π|~k|θ). (B.3)

Here, C∞ is an infinite constant independent of k and θ.

C. Effective action for the Wilson line in d = 1 gauge theories

In this appendix, we consider the one dimensional Euclidean gauge theory on a circle of

circumference R with p scalars and action

S =

∫
dt tr

(
1

2
DtΦiDtΦi +

M

2
ΦiΦi −

g2

4
[Φi,Φj ][Φi,Φj ]

)
. (C.1)

The analysis here follows that of [30], which considered the special case of two scalar fields.

Note that here we have rescaled the gauge field and the scalar fields by a factor of g
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compared to our previous analysis, so as to have canonical kinetic terms. We would like

to integrate out the scalar fields for small values of the dimensionless ’t Hooft coupling

g2N/M3, to obtain an effective action in terms of the Wilson line of the gauge field around

the circle. We choose the gauge ∂tA0 = 0, so that A0 is a t-independent Hermitian matrix

A0 = α. With this choice, the Wilson line is simply given by

U = eiαR . (C.2)

We define

exp(−Seff(U)) =

∫
[dΦi]e

−S(Φ,α), (C.3)

in terms of which the partition function is given by

Z =

∫
DU exp(−Seff(U)) . (C.4)

As explained in section 4 of [2], the Haar measure DU arises from the initial measure [dA0]

upon introducing the Fadeev-Popov determinant associated with the gauge fixing condition

∂tA0 = 0.

By gauge invariance, the effective action must be some function of the variables

un ≡ 1

N
tr(Un) . (C.5)

At one-loop order, the calculation of Seff was described in [2], with the result

S1−loop
eff (U) = N2

∞∑

n=1

1

n
(1 − pxn)|un|2, (C.6)

where x = e−RM . Here, the x-independent term is a rewriting of the Vandermonde deter-

minant obtained in writing the Haar measure in terms of eigenvalues. For x < 1/p, the

one-loop effective action is positive definite, minimized by the saddle-point configuration

un = 0. As x passes xc = 1/p, the mode u1 becomes unstable and condenses to its maxi-

mum allowed value (as long as all other un = 0) u1 = 1/2, giving rise to a first order large

N phase transition in the strict g2N = 0 limit.

As described in section 6 of [2], in order to determine the nature of the phase transition

for weak but non-zero coupling, it is necessary to take into account higher order terms in

the effective action. The relevant physics may be deduced easily from the effective action

for u1, obtained by integrating out both the scalar fields and all the modes un>1 near the

transition. This takes the general form

Seff(u1) = N2(m2
1(x, λ)|u1|2 + b(x, λ)|u1|4 + O(λ4)) , (C.7)

where in perturbation theory b starts at order λ2. If the coefficient b is positive at the

value xc of x where m2
1 drops to zero, we will have a second order phase transition with

the eigenvalue distribution for U changing continuously. On the other hand if (as we will

find below) the coefficient b is negative at this value x = xc, the potential develops a
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second minimum which is lower than the first already at some slightly lower value of x, the

eigenvalue distribution changes discontinuously, and we have a first order phase transition.

The leading order contribution to b is given by

b = D3 −
C2

2

B1
, (C.8)

where B1, C2, and D3 are the leading coefficients of the terms |u2|2, (u2u
2
−1 + u−2u

2
1),

and |u1|4 in the effective action obtained by integrating out the scalars; these terms first

arise at one, two, and three-loop order, respectively. We now proceed to compute these

coefficients, together with the corrections to the coefficient A = N2m2
1 of |u1|2, needed to

determine how the phase transition temperature varies with the coupling constant.

The higher loop corrections to the effective action are given by

Spert
eff = 〈−e−

g2

4
tr([Φi,Φj ]2)〉connected. (C.9)

This may be evaluated in perturbation theory using the propagator

〈(Φi)kl(t1)(Φj)mn(t2)〉 = ∆kn(t1 − t2, α)δlm − δkn∆lm(t1 − t2, α), (C.10)

where the matrix ∆ is defined by

∆(t, α) =
eiαt

2M

(
e−tM

1 − e−MβeiαR
− etM

1 − eMβeiαR

)
. (C.11)

More details about the perturbative evaluation and our conventions may be found in [15].

Setting M = 1 for now, the contribution to the effective action from the two-loop figure

eight diagram is given by

S2 loop
eff =

g2

2
β(p2 − p) tr(∆(0, αab)∆(0, αac)) , (C.12)

where we have introduced the notation αab = αa − αb, with

αa = α ⊗ 1 ⊗ 1, αb = 1 ⊗ α ⊗ 1, αc = 1 ⊗ 1 ⊗ α. (C.13)

This leads to quadratic terms

S2 loop
quad = −1

4
N2λ(p2 − p) ln(x)

∑

n

(x2n + 2xn)|un|2, (C.14)

and leading order cubic terms

S2 loop
cubic = −1

8
N2λ(p2 − p) ln(x)(x2 + 2x3)(u2u

2
−1 + u−2u

2
1) + . . . . (C.15)

At three loops, the diagrams 3a, 3b, and 3c shown in figure 21 give the following

contributions

S3a
eff = −1

2
g4(p2 − p)β

∫
dt tr(∆(t, αab)∆(t, αbc)∆(t, αcd)∆(t, αda)),

S3b
eff = −1

2
g4p(p − 1)2β

∫
dt tr(∆(0, αab)∆(t, αac)∆(t, αca)∆(0, αad)),

S3c
eff = −1

2
g4p(p − 1)2β

∫
dt tr(∆(0, αab)∆(t, αac)∆(t, αca)∆(0, αcd)). (C.16)
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3a 3b 3c

Figure 21: Three-loop diagrams contributing to the effective action.

These contribute to the quadratic term for the lowest mode

S3a
quad = − 1

16
N2λ2|u1|2(p2 − p) ln(x)x(2x ln(x) + x2 − x − 3),

S3b
quad = − 1

16
N2λ2|u1|2p(p − 1)2 ln(x)x(ln(x)(2x + 1) − 3(x + 1)),

S3c
quad = − 1

16
N2λ2|u1|2p(p − 1)2 ln(x)x(ln(x)(x + 1)2 − (x2 + 2x + 3)). (C.17)

The same diagrams also give the leading | tr(U)|4 terms,

S3a
quart = − 1

32
N2λ2|u1|4(p2 − p) ln(x)x2(2 ln(x) + 2x2 − 5),

S3b
quart = − 3

16
N2λ2|u1|4p(p − 1)2 ln(x)x3(ln(x) − 1),

S3c
quart = − 1

16
N2λ2|u1|4p(p − 1)2 ln(x)x2(2x2 ln(x) − x2 − 2). (C.18)

Collecting our results, we have

Seff = A|u1|2 + B1|u2|2 + C2(u2u
2
−1 + u−2u

2
1) + D3|u1|4 + . . . (C.19)

where

A/N2 = (1 − px) − 1

4
λ(p2 − p) ln(x)(x2 + 2x)

− 1

16
λ2(p2 − p)x ln(x)(2x ln(x) + x2 − x − 3)

− 1

16
λ2p(p − 1)2x ln(x)(ln(x)(x2 + 4x + 2) − x2 − 5x − 6) + O(λ3),

B1/N
2 =

1

2
(1 − px2) + O(λ),

C2/N
2 = −1

8
λ(p2 − p) ln(x)(x2 + 2x3) + O(λ2),

D3/N
2 = − 1

32
λ2(p2 − p) ln(x)x2(2 ln(x) + 2x2 − 5)

− 1

16
λ2p(p − 1)2 ln(x)x2(ln(x)(2x2 + 3x) − x2 − 3x − 2) + O(λ3). (C.20)

From these above expressions and from (C.8) we find that

b(x = xc = 1/p)/N2 = − 1

32

(p − 1) ln(p)

p3
(ln(p)(9p2 + 2p) + 4p3 + 7p2 − 4p − 4)λ2, (C.21)
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which is negative for all p > 1. Thus, the phase transition is of first order at weak coupling.

To determine the precise transition point as a function of λ, we note that to order λ2,

the second minimum |u1| = 1/2 will become dominant at the point xc where

m2
1(x)

1

22
+ b(x)

1

24
= 0. (C.22)

Solving perturbatively for xc as a function of λ, we find

xc =
1

p
+ λ

(p − 1)(2p + 1) ln(p)

4p2
(C.23)

+λ2 (p − 1) ln(p)

128p4
((16p4− 33p2− 10p) ln(p) − 80p4 − 20p3 + 41p2 + 28p + 4) + O(λ3).

Expressing this as an equation for t̃ = 1/(Rλ1/3) as a function of m = M/λ1/3 gives the

relation (4.6) .

D. Pure and deformed Yang-Mills partition functions on T
2

In this appendix, we review the exact solution of pure Yang-Mills theory on T 2 [9], and use

techniques developed by Gross and Taylor [31 – 33] in order to write the result at large N

in terms of an effective action for one of the two holonomies, U and V . We then proceed to

study the partition function for a class of deformations which are encountered in section 5.

D.1 Pure Yang-Mills theory on T 2

An exact expression for the partition function of pure Yang-Mills theory on T 2 is easily

obtained, following Migdal [9], if we use a particular lattice regularization of the theory.

We put unitary matrices UL on the links on the lattice, and consider the partition function

Z =

∫ ∏

L

dUL

∏

P

ZP (UP ), (D.1)

where P denotes the plaquettes of the lattice, UP is a product of the UL’s around the

plaquette P , and ZP is a plaquette action chosen so that the continuum theory coincides

with Yang-Mills theory (for instance, the Wilson action ZP = exp( 1
g2

Y M
tr(UP + U−1

P ))).

Migdal noted that, upon integrating out various links, one is left with an action of the

form (D.1) with a plaquette action for the remaining (larger) plaquettes that approaches

a weighted sum of characters χR, in the representation R of the gauge group:

ZP (UP ) =
∑

R

dRχR(UP )e−
λA
2N

C2(R), (D.2)

where the representation R has dimension dR and quadratic Casimir C2(R), λ is the di-

mensionless ’t Hooft coupling, and A is the area of the plaquette20. Using standard or-

thogonality relations, it is easy to verify the additivity property of (D.2),
∫

DUZP (V1U, λA1)ZP ′(U †V2, λA2) = ZP+P ′(V1V2, λ(A1 + A2)), (D.3)

20In [9], Migdal considered a more general situation in which (D.1) was not required to yield pure Yang-

Mills theory in the continuum limit. As such, he originally wrote the factor in the exponent in terms of a

representation-dependent coupling, gR, noting that g2
R → g2

Y MC2(R) gives the correct Coulomb law. One

can also see this directly by applying Migdal’s analysis to the Wilson action.
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at which point (D.1) can be reduced to an integral over two matrices, U and V , corre-

sponding to the products of the UL’s over the links along the two non-trivial cycles of the

torus:

Zym =

∫
DU DV

∑

R

dRe−
eλ

2N
C2(R)χR(UV U−1V −1) , (D.4)

where λ̃ is the ’t Hooft coupling times the area of the T 2. We can then use the result
∫

DU χR(UAU−1B) =
1

dR
χR(A)χR(B) (D.5)

to integrate out one matrix, say U , from (D.4), obtaining

Zym =

∫
DV

∑

R

e−
eλ

2N
C2(R)χR⊗R̄(V ). (D.6)

This integral is also trivial to perform, since R ⊗ R̄ contains the identity precisely once,

yielding the well-known expression for Zym purely as a function of λ̃,

Zym =
∑

R

e−
eλ

2N
C2(R). (D.7)

In the rest of this subsection, we shall be interested in determining, in the limit of large

N , a more explicit form for the effective action, Seff(V ), corresponding to the partition

function (D.6).

Thus, we seek a large N expansion of the quadratic Casimir and character appearing

there. As pointed out by Gross and Taylor in [31]-[33], one may obtain the correct large

N expansion of (D.6) by summing independently over representations formed from tensor

products of finitely many fundamentals and anti-fundamentals. The Young tableaux for

any such representation may be obtained uniquely by adjoining the Young tableau for

some representation obtained from the product of finitely many anti-fundamentals with

the Young tableau for some representation obtained from the product of finitely many

fundamentals. Following the notation in [31, 33] we denote these representations by S̄ and

R respectively, and denote the representation corresponding to the original tableau, termed

the “composite” representation of R and S, by T = S̄R.

Letting nR (nS) denote the number of boxes associated to the representation R (S),

we may express the quadratic Casimir of the composite representation T in terms of those

of its components as:

C2(T ) = C2(R) + C2(S) +
2nRnS

N2
, (D.8)

where

C2(R) = NnR + O(N0) , C2(S) = NnS + O(N0) . (D.9)

Denoting the set of Young tableaux with n boxes by Tn, and denoting both an arbitrary el-

ement of Tn and the representation corresponding to it by Yn ∈ Tn, we may now write (D.6)

at large N as

Zym =

∫
DV

∑

n,n′

∑

Yn∈Tn

∑

Y ′

n′
∈Tn′

e−(n+n′)
eλ
2 χ

(Ȳ ′

n′
Yn)⊗(ȲnY ′

n′
)
(V ). (D.10)
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We now seek to expand the characters appearing in the integrand as a polynomial in

traces. To proceed, we first define some further notation. To any given tableau, Yn ∈ Tn,

we may associate not only an irreducible representation, also denoted by Yn, of SU(N),

but also an irreducible representation, Ŷn, of the permutation group Sn. We use χYn(V ) to

denote the character of the SU(N) representation Yn evaluated on V ∈ SU(N), and χbYn
(σ)

to denote the character of the Sn representation Ŷn evaluated on σ ∈ Sn. To each tableau,

Yn ∈ Tn, we also associate a conjugacy class, ρYn , of Sn, which can also be labeled by the

numbers {σi}, which specify the number of cycles of length i in an element of ρYn . Finally,

we let Υσ denote the Schur function associated to σ ∈ Sn,

Υσ(V ) =
∑

Yn∈Tn

χbYn
(σ)χYn(V ) =

∏

i

tr(V i)σi . (D.11)

The character of any representation Yn ∈ Tn is easily expanded in terms of Schur functions

χYn(V ) =
1

n!

∑

σ∈Sn

χbYn
(σ)Υσ(V ). (D.12)

To study (D.6), we shall need the following generalized version of (D.12) for composite

representations that was worked out by Gross and Taylor [33]:

χȲ ′

n′
Yn

(V ) =
1

n!n′!

∑

σ∈Sn

∑

τ∈Sn′

χbYn
(σ)χbY ′

n′

(τ)Υτ̄ σ(V, V †), (D.13)

where

Υτ̄σ(V, V †) =
∑

Yn∈Tn

∑

Y ′

n′
∈Tn′

χbYn
(σ)χbY ′

n′

(τ)χȲ ′

n′
Yn

(V )

=
∏

l

Υτ̄ (l)σ(l)(V, V †),

Υτ̄ (l)σ(l)(V, V †) =

min(σl,τl)∑

k=0

(
σl

k

)(
τl

k

)
(−1)klkk! tr(V l)σl−k tr(V −l)τl−k. (D.14)

Using this result, we may now write (D.6) as

Zym =

∫
DV

∑

n,n′

∑

σ,σ′∈Sn

∑

τ,τ ′∈Sn′

∑

Yn∈Tn

∑

Y ′

n′
∈Tn′

e−(n+n′)
eλ
2 ×

χbYn
(σ)χbYn

(σ′)χbY ′

n′

(τ)χbY ′

n′

(τ ′)

(n!)2(n′!)2
× Υτ̄σ(V, V †)Υσ̄′τ ′(V, V †). (D.15)

The sum over Young tableaux can be performed using the completeness relation

1

n!

∑

Yn∈Tn

χbYn
(σ)χbYn

(σ′) =
1

|ρσ|
δρσ ,ρσ′

, (D.16)
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where ρσ denotes the conjugacy class to which σ belongs and |ρσ| its dimension. Using

this result we obtain

Zym =

∫
DV

∑

n,n′

∑

σ∈Sn

∑

τ∈Sn′

e−
eλ
2
(n+n′)

n!n′!
Υτ̄σ(V, V †)Υσ̄τ (V, V †)

=

∫
DV

∑

n,n′

∑

σ∈Sn

∑

τ∈Sn′

e−
eλ
2
(n+n′)

n!n′!

∏

l

{
[
tr(V l) tr(V −l)

]σl+τl ×

min(σl,τl)∑

k,k′=0

(
σl

k

)(
σl

k′

)(
τl

k

)(
τl

k′

)
(−l)k+k′

k!k′!
[
tr(V l) tr(V −l)

]−(k+k′)
}. (D.17)

We now replace the sums over σ, τ with (appropriately weighted) sums over the σi, τj

which label conjugacy classes. Typically, such sums must be subject to the restrictions∑
i iσi = n,

∑
j jτj = n′ and are difficult to evaluate. Fortunately, the sums over n, n′

serve to lift these restrictions, leaving us with the following expression

Zym =

∫
DV

∏

l





∞∑

σl,τl=0

min(σl,τl)∑

k,k′=0

(
e−

eλl
2

l

)σl+τl [
tr(V l) tr(V −l)

]σl+τl

(D.18)

× σl!τl!

k!k′!(σl − k)!(σl − k′)!(τl − k)!(τl − k′)!
(−l)k+k′

[
tr(V l) tr(V −l)

]−(k+k′)
}

,

which can be rewritten as

Zym =

∫
DV

∏

l





∞∑

σ,τ=0

∞∑

k,k′=0

(
e−

eλl
2

l

)σ+τ+2 max(k,k′)

(−l)k+k′

σ!τ !k!k′!
(D.19)

×
[
[σ + max(k, k′)]! [τ + max(k, k′)]!

[σ + |k − k′|]! [τ + |k − k′|]!

] [
tr(V l) tr(V −l)

]σ+τ+|k−k′|
}

.

We now consider the sum at fixed l, which may be rewritten, after a little algebra, as

∞∑

σ,τ,k′=0

∞∑

k=−∞

1

σ!τ !k′!

(
e−

eλl
2

l

)σ+τ (
−e−

eλl

l

)|k| (
e−

eλl
)k′

[
(σ + |k| + k′)!(τ + |k| + k′)!
(σ + |k|)!(τ + |k|)!(|k| + k′)!

]

×
[
tr(V l) tr(V −l)

]σ+τ+|k|
. (D.20)

In our large N limit, (D.20) becomes

exp

[(
2e−

eλl
2 − e−

eλl

l

)
tr(V l) tr(V −l)

]
, (D.21)

with corrections that are subleading in N in the exponent. As a result we find that (D.17)

can be written as

Zym =

∫
DV exp

{
−Seff(V, λ̃)

}
, (D.22)
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where

Seff(V, λ̃) =
∞∑

l=1

[(
e−

eλl
2 − 1

)2

− 1

] (
tr(V l) tr(V −l)

l

)
. (D.23)

To study this result, we write it in terms of the moments un ≡ tr(V n)/N of the

eigenvalue distribution,

Zym ∼
∫

(
∏

n

d2un) exp




−N2

∞∑

n=1

(
e−

neλ
2 − 1

)2

n
|un|2





. (D.24)

A model similar to this was studied in [2]. Here, the masses of all moments, un, are positive

for all positive values of the coupling, λ̃, and thus the dominant eigenvalue distribution

is the uniform one with un = 0 for all nonzero n. At large N , the un are essentially

independent variables and can be integrated out to yield

Zym ∼
∏

n

(
1 − e−

eλn
2

)−2

. (D.25)

This is in agreement with the known partition function for pure Yang-Mills theory on T 2

at large N .

D.2 Deformed Yang-Mills theory on T 2

In this appendix, we derive a formula relevant to our study in section 5 of pure Yang-

Mills theory deformed by very massive scalars. In section 5.5, we argue that in a certain

regime of parameter space, integrating out very massive adjoint scalars gives, to a good

approximation, an expression (5.24) for the partition function, where f and g depend only

on the eigenvalues of U and V respectively. Now, changing variables U → WUW−1 and

integrating over W (which doesn’t change the result since the integrand cannot depend on

W ) we obtain

Zym =

∫
DW DU DV

∑

R

dRe−
eλ

2N
C2(R)χR(WUW−1V WU−1W−1V −1)e−f(U)e−g(V ).

(D.26)

Here, we have used the invariance of both the measure DU and of the function f(U) under

the transformation used in the change of variables. To proceed further, we seek to evaluate

the integral

I(D1,D2) =

∫
DC χR(CD1C

−1D2CD−1
1 C−1D−1

2 ). (D.27)

Using SU(N) symmetry, the form of I(D1,D2) is restricted to

I(D1,D2) = α + β
[
χR(D1)χR(D−1

1 ) + χR(D2)χR(D−1
2 )

]

+γχR(D1)χR(D−1
1 )χR(D2)χR(D−1

2 ). (D.28)

To compute I(D1,D2), we thus need only to determine the three numbers α, β, γ. To

constrain their values, let us first look at I(1,D2). Equating (D.27) and (D.28) we obtain

α + β
[
d2

R + χR(D2)χR(D−1
2 )

]
+ γd2

RχR(D2)χR(D−1
2 ) = dR. (D.29)
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We next consider integrating
∫

DD1I(D1,D2). Comparing the result obtained by inter-

changing the integrations over D1 and C yields

α + β
[
1 + χR(D2)χR(D−1

2 )
]
+ γχR(D2)χR(D−1

2 ) =
1

dR
χR(D2)χR(D−1

2 ). (D.30)

Equations (D.29) and (D.30) give 4 equations relating the coefficients α, β, γ:

α + βd2
R = dR,

β + γd2
R = 0,

α + β = 0,

β + γ =
1

dR
. (D.31)

This system has a unique solution

α = − dR

d2
R − 1

,

β =
dR

d2
R − 1

,

γ = − 1

dR(d2
R − 1)

. (D.32)

Applying (D.28) with these values to our expression (D.26), we may rewrite ZY M as (5.25).

E. More about the Monte-Carlo simulations

The Monte-Carlo simulations presented here were written using an elementary implementa-

tion of the Metropolis algorithm. The ensembles were fully thermalized between samplings

with various time-time correlators being checked.

In the case of the 0+0 matrix integrals the implementation is extremely simple. For the

0+1 matrix quantum mechanics we require a lattice of L spatial sites, with circle topology,

and each site is equipped with the scalar adjoint matter matrices, with the gauge field

living as usual on the links. Since the gauge dynamics is trivial in this low dimension

we may perform a gauge transformation to make the unitary link variables equal on all

sites. Furthermore we may use up the remaining gauge freedom by diagonalizing this

unitary link matrix. The remaining diagonal components are pure phases, and are physical,

giving the eigenvalues of the Polyakov loop when raised to the power L, the number of

lattice sites. We carefully ensure that the Jacobian introduced by this gauge fixing is

properly implemented. This unitary matrix measure is the non-perturbative version of

the Vandermonde determinant and is given by Πi<j sin2 L
2 (θi − θj) for i = 1, · · · , N , where

eiθi are the eigenvalues of the unitary link. This measure factor is implemented by taking

its log and introducing it as a potential term in the action. We automatically adjust the

Metropolis step size to ensure decent acceptance rates, and use independent step sizes

for the unitary link eigenvalues, and for both the scalar adjoint matter diagonal, and off-

diagonal components.
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For the large N behaviour we study we require relatively few lattice points to accurately

capture the continuum behaviour. For p scalars with p = 2, 4 the data presented here uses

10 lattice points. For the p = 9 data 5 lattice sites were used. For individual values of

λ and M we checked that this was sufficient for the quantities we measured, finding that

doubling or quadrupling the number of lattice sites did not change the results at the level

of one percent.
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